SliceChip: A Benchtop Fluidic Platform for Organotypic Culture and Serial Assessment of

Human and Rodent Pancreatic Slices

Supplemental Information

Supplemental Figure 1. Stimulation Index data. (A) Stimulation index, taken as the ratio of the AUC of high glucose stimulation to the AUC of low glucose stimulation. Data is reported on a log scale and with individual data points reported. n = 3 on days 2, 3, and 5. (B) Mean and standard deviation data for each day of stimulation.

Supplemental Figure 2. Adapted SliceChip with oxygen sensors placed along the flow path. (A) fluid inlet (B) fluid outlet (C) PreSens oxygen sensor (D) fiber optic data-transfer cable.

Supplemental Protocol 1. Protocol for the complete assembly of the Slice Chip Platform

Materials:

Material	Quantity	Product Name	Notes
Degasser	2	DEGASi Plus Micro (Part: 0003-6352-S)	Modified channel length to 66uL (cut 18mm from each side of the tubing)
Bubble Trap	2	Diba Omnifit (Mfr # 006BT-HF, Item # UX-21940-39)	10um PTFE filter each
Bottle-CAP	10	Fluigent SKU: RES- CAP-PCK	Bottle caps for pressurization w/ 2 ports (GL-45 thread). Includes pneumatic fitting
Fingertight Conical Connector	12	IDEX Mfr # F-130X, Item # EW-02013-43	Long Thread, Natural PEEK, 1/16" OD Tubing, 10-32 Coned
T Connector	8	Product 80144	T Connector w/ 2 Female Luer Locks, 1 Male Slip
Flow Unit Connector Kit	2	Fluigent SKU: CTQ- KIT-FU2	Includes: Flow Unit S&M Adapter, FEP Tubing, Flangeless Fitting, Blue Ferrules
Flangeless PEEK Fittings	18	Flugient SKU: CTQ- KIT-XP	¹ / ₄ -28 to 1/16" OD
PEEK Fittings Ferrules	22	Fluigent SKU: CTQ- KIT-XP	¹ / ₄ -28 to 1/16" OD
Male Luer	18	Product ex) 04116	Any male luer lock w/ 1/16" Barb (1.5mm) ID Tubing

Equipment	Notes		
Analytical Selector Valve	IDEX Part Number: 7060		
Compressed Gas Canister	95% O2, 5% CO2		
Stagetop Incubator	Tokai Hit Stagetop Incubator STXF		
Keyence Microscope	BZ-X800, RRID: SCR_023617		
Microfluidic Chip			
Microfluidic Chip Gaskets (x2)			
Microfluidic Chip Clamp	Product SKU: MN-FC-PRO-CH4515		
Clamp Ferrules	Product SKU: MN-FC-PRO-FFKM-KIT.05		
Flow Unit S (x2)	Fluigent: FLU-S-D, RRID: SCR_021144		
Flow EZ (x2)	Fluigent: LU-FEX-0345, RRID: SCR_021145		
EZ Low Pressure Kit	Fluigent: CTQ-KIT-LP-MFCS (Includes:		

	male luer connector, luer cap, backflow filters, **1x3mm tubing**)
Bead Bath	
GL-45 Bottles (x10)	

Important note: **1x3mm tubing** from EZ Low Pressure Kit should be cut into 10 individual 10cm lengths of tubing. Later referred to as *pneumatic tubing*.

Tubing Location	Tubing Length	Quantity
Bottle to Switch	36cm	10
Switch to Degasser	26cm	2
Degasser to Debubbler	14cm	2
Debubbler to Chipp	43cm	2
Chip to Flow Unit	36cm	2
Flow Unit to Outlet	41cm	2

Tubing is cut from IDEX FEP 1/16 x .01 x 50ft roll (Part #: 1527L).

Flow Unit to Outlet tubing is a larger diameter: IDEX FEP 1/16 x .02 x 100ft roll (Part #: 1548XL).

Before Starting & Recommendations:

- 1. Set the heat bath to 37 degrees Celsius and the *Tokai Hit heating stage* to 40 degrees Celsius.
- 2. Setup the *Flow EZ* lineup system where pressure source is the *compressed gas canister*.
- 3. Connect the *flow units* to the *Flow EZ*.

Note: This protocol creates a network of interconnected tubing under the culture hood which must be transferred to the microscope/heat bath setup after assembly, a tray or extra set of hands can greatly assist this transfer.

Sterilization Procedure:

- 1. Autoclave the following components:
 - GL-45 bottles
 - Bottle-CAPs
 - Chip Clamp Ferrules
 - Male Luer Connector
 - Bubble Trap Filters
 - Microfluidic Chip Clamp
 - Backflow Filters
 - T Connectors
 - Flangeless Fittings
 - Fitting Ferrules
 - Fingertight Conical Connector

1	2.	Spray the following components with ethanol and place inside the culture hood:
2		• FEP Tubing of appropriate lengths and quantities
3		• Degasser
4		Bubble Traps
5		Analytical Selector Valve (switch)
6		Microfluidic Chip
7	3.	In the culture hood, pass ethanol, clean DI water, and air through each tube.
8	4.	Separate and label the corresponding lengths of tubing for their correct final location
9		(refer to materials).
10		
11	Setup	Assembly – Inside the Hood:
12	1.	Gather tubing for the Bottle to Switch. For each tubing:
13 14		a. Add a <i>flangeless fitting</i> with the threaded side facing towards the end of the tubing.
15		b. Add a <i>blue fitting ferrule</i> with the conical side facing towards the threading and
16		slide it along the tubing to meet the <i>flangeless fitting</i> to create a <i>flangeless</i>
17		fitting/ferrule complex.
18		c. Adjust this complex so that there are approximately 4" of excess tubing below the
19		fitting ferrule (adjust the length of tubing as needed for the GL-45 bottle size, the
20		opening of the tubing should sit close to the bottom of the bottle \sim 1mm).
21		d. Screw this complex into the <i>Bottle-CAP</i> .
22	2.	Attach a <i>fingertight conical connector</i> to the opposite end of each tubing.
23	3.	Screw each of these <i>fingertight conical connectors</i> into the <i>analytical selector valve</i>
24		(switch). There should be 5 tubing complexes attached to each valve (occupying slots 1-
25		5).
26	4.	For each valve/bottle cap assembly:
27		a. Connect the <i>pneumatic fittings</i> into the other <i>Bottle-CAP</i> port.
28		b. In 4 of the caps, place a <i>T</i> connector with the male slip insert into the <i>pneumatic</i>
29		fitting and the female openings exposed.
30		c. Place a <i>male luer connector</i> onto each of the female openings and attached a
31		pneumatic tubing between each piece.
32	5.	Gather the tubing for <i>Switch to Degasser</i> . For each tubing:
33		a. Attach a <i>fingertight conical connector</i> on the end of the tubing and screw it into
34		the center of the <i>selector valve</i> .
35		b. On the other end of the tube, attached a <i>flangeless fitting/ferrule complex</i> by
36		adding a <i>flangeless fitting</i> with the treads facing the end of the tubing. Then place
37	ſ	a <i>blue fitting ferrule</i> with the conical side facing toward the <i>flangeless fitting</i> .
38	6.	Gather the tubing for Degasser to Debubbler . For each tubing:
39		a. On each end of the tubing attach a <i>flangeless fitting/ferrule complex</i> (Described in
40		Step 5b).

41		b. Assemble a <i>bubble trap (debubbler)</i> by placing a filter between the two halves
42		and using an Allen wrench to screw the <i>debubbler</i> together. The assembly should
43		be tightened by loose enough that you can spin the bottom half of the <i>debubbler</i> .
44		c. Set one side of the tubing into the assembled <i>debubbler</i> by screwing the
45		flangeless fitting into one of the debubbler's ports.
46	7. Gat	her the <i>Debubbler to Chip</i> tubing. For each tubing:
47		a. On one side of the tubing attach a <i>flangeless fitting/ferrule complex</i> .
48		b. Screw the <i>flangeless fitting</i> into the <i>debubbler's</i> other port. Leave the other end of
49		the tubing free to eventually connect to the chip.
50	8. Gat	her the <i>Chip to Flow Unit</i> tubing. Place the <i>flow unit connector kit</i> on one end of the
51		ng by following manufacturing instructions. Leave one end of the tubing free to
52		nect to the chip later.
53		her the <i>Flow Unit to Outlet</i> tubing (<i>reminder: larger ID tubing</i>). Attach one end of
54		tubing to the <i>flow unit connector kit</i> and leave the other end free for collection of
55	med	
56		the <i>clamp ferrules</i> into all the <i>microfluidic chip clamp</i> inlet and outlet ports.
57		her the <i>Chip to Flow Unit</i> tubing. To create the outlets, insert the free end of the first
58		ng into port 7 of the <i>microfluidic chip clamp</i> so that the end of the tubing is flush with
59		end of the ferrule inside the clamp. Repeat with the free end of the second tubing into
60		9 of the <i>microfluidic chip clamp</i> .
61	-	her the Debubbler to Chip tubing. To create inlets, insert the free end of the first
62		ng into port 2 of the <i>microfluidic chip clamp</i> so that the end of the tubing is flush with
63		end of the ferrule inside the clamp. Repeat with the free end of the second tubing into
64		4 of the <i>microfluidic chip clamp</i> .
65	-	ve the clamp open, sperate the top and bottom of the chip, space out each of the other
66		assembled components under the hood. UV the entire setup for 20 minutes.
67		
68	Experimen	t Prep – Inside the Hood:
69	1. Afte	er the 20 minute UV exposure period, with clean gloves and extreme care, use a
70	pair	tbrush to transfer a pancreatic slice into the well on the bottom half of the chip,
71	smo	othing out any folds. With forceps place an anchor atop the slice. Repeat for the
72	seco	ond well.
73	2. Plac	the bottom half of the chip into the clamp following the alignment posts. Then align
74	the	top half of the chip and place it down maintain gentle pressure.
75		e your forefinger through the upper viewing window of the <i>microfluidic chip clamp</i>
76	from	n the top surface in. Maintain gentle pressure as you close the microfluidic chip
77	clan	np.
78	4. Brir	ng media and other solutions into the hood and replace caps with each of the bottle-
79	CAI	Ps taking care to maintain the same bottle order for each side of the chip.
80		
81	Experi	mental Setup:

Kevence microscope. Place the outlet tubings on the left side exit holes from the stage 83 84 warmer. Place the inlet tubings on the right-side exit holes from the stage warmer. 2. Take the free end of the *Switch to Degasser* tubing and attach the *flangeless fitting* to the 85 left side of the *degasser*. Repeat for the second set of *Switch to Degasser* tubing. 86 3. Take the free end of the *Chip to Flow Unit* tubing and attach the *connector kit* to the *flow* 87 88 unit. Repeat for the second set of Chip to Flow Unit tubing. 89 4. Bring the bottle/switch complex from the hood to the heat bath. a. Place the bottles in the heat bath, assuring the liquid line of the bottles are fully 90 91 submerged in the beads. 92 b. Attach the free end of the *Degasser to Debubbler* tubing to the right side of the 93 degasser. Repeat for the second set of **Degasser to Debubbler** tubing. 94 5. Attach the *Flow to Outlet* tubing to the flow unit via the connector. 6. Connect the bottles to the *Flow EZ* via the pneumatic tubing outlets from the *Flow EZ* 95 placing it into the open female end of the first bottle in the bottle assembly. 96 97 7. Set the flow rate of the *Flow EZ* to 80ul/min. 98 99 **Assembly Breakdown:** 100 1. Carefully unclamp the *microfluidic chip clamp* and remove the slice from the chip. 101 2. Unscrew each component of the assembly. For each component, flush with ethanol and 102 DI water. Then blow clean dry air through each piece.

1. Carefully move the clamp/tubing complex into the *Tokai Hit stage warmer* on the

103

82

	Oxygen Consumption N	lodel
Parameter	Value	Unit
т	37.0	°C
η_{media}	0.6922	mPa⋅s
η_{tissue}	.700	mPa·s
ρ _{media}	993.357	kg/m³
P _{tissue}	1000	kg/m³
α·D _{oxymedia}	3.54e-12	mol/(m·mmHg·s)
α·D _{oxytissue}	1.24e-12	mol/(m·mmHg·s)
U _{inlet}	80.0	µl/min
P _{ref}	1.0	atm
P _{outlet}	0.0	atm
C _{mm02}	0.001	м
C _{cr}	0.0001	м
R _{maxO2}	-0.034	mol/(m³·s)
C _{O2} media(initial)	120 or 60	mmHg
C _{O2} tissue(initial)	100	mmHg
	Glucose Washout Mo	del
т	37.0	°C
η _{media}	0.6922	mPa·s
ρ _{media}	993.357	Kg/m³
U _{inlet}	20.0—80.0 (10.0 increments)	µl/min
P _{ref}	1.0	atm
P _{outlet}	0.0	atm
D _{glucosemedia}	3.0e-9	m²/s
C _{glucose(initial)}	0	mM
C _{glucose(end)}	5	mM

104

105

106 Supplemental Table 1. COMSOL Parameters for Oxygen Consumption modeling and Glucose

107 Washout Modeling

108

Sample ID	Diabetes Duration (Years)	Age (Years)	Sex	Ethnicity	BMI	Date used
HP-22278	n/a	37	М	Hispanic	29.1	10/9/2022
nPod6584	n/a	22	М	Caucasian	21.1	2/6/2023
HP-23159	n/a	37	М	Hispanic	27.2	6/8/2023

110 Supplemental Table 2. Pancreatic Donor Demographics