Spatially controlled diffusion range of tumor-associated angiogenic factors to develop a tumor model using a microfluidic resistive circuit

Yu-Hsiang Hsu^{1,2*}, Wen-Chih Yang¹, Yi-Ting Chen¹, Che-Yu Lin¹, Chiou-Fong Yang¹, Wei-Wen Liu³,

Subhashree Shivani⁴, Pai-Chi Li⁴

¹Institute of Applied Mechanics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C). <u>yhhsu@iam.ntu.edu.tw</u>.

²Graduate School of Advanced Technology, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C). Graduate Institute of Oral Biology, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C). ⁴Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan (R.O.C).

Figure S1. Simulation results of the DC-MPS device with a reversed pressure application: pressure distribution (A), diffusion patterns of dextran diffused from microchannels (B), diffusion patterns of dextran diffused from the C_A chamber at 12-hr (C) and 24-hr (D).

Figure S2. Statistical analysis on the growth of the SW480 tumor developed from cell suspensions of S₁ (h_7h_{14}) and S₁F₅ (h_7h_{14}) conditions (A) and from a tumor spheroid (SR) (B).

Supplementary information

Figure S3. Simulated concentration profiles of molecules released from a tumor spheroid toward the C_V chamber 24 hours after loading, where the tumor spheroid is located in the left (A), bottom (B), middle (C), and top (D) regions of the C_A chamber. The corresponding concentration profiles at 0, 6, 12, 18, and 24 hours along with the red dashed lines are in (E-H). (scale bar = 500 µm).