Supplementary Information

A dual-functional microfluidic chip for guiding personalized lung cancer medicine: combining EGFR mutation detection and organoid-based drug response test

Kexin Zhang^{1#}, Jiyu Xi^{1#}, Huiting Zhao¹, Yadong Wang^{2,3}, Jianchao Xue^{2,3}, Naixin Liang², Zewen Wei^{1*}

1 Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.

2 Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

3 Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

[#] K.Z. and J.X. contributed equally to this work.

*Correspondence should be addressed to Zewen Wei (weizewen@bit.edu.cn).

Injection pump

Fig. S1. Detailed interior structure of the RDMO-System. Associated control/communication modules consist of wireless communication & control circuits, valves, pumps and battery. In detail, the wireless communication & control circuit contains a Bluetooth chip, a RS232/RS485 chip, and a DC/DC chip. The 2 eight-channel solenoid valves controlled by pressure pump are used for facilitating liquid/gas transportation and regulating flow rates. The injection pump ensures the dynamic fluidic flow on the RDMO-System.

Fig. S2. The valve structure and vertical dimensions of RDMO-Chip. To fulfill the requirements of single cell trapping, the height of single cell trapping/staining channel is designed to 30 µm. To establish a sufficient space for organoid growth, the height of the organoid culture chamber is set to 200 µm. The height of the drug/culture medium channel is set to 50 µm. As there is no spatial overlap between valve area and function area for processing cells/organoids, no extra valve control layer is employed. In EGFR mutation detecting module, the valve control chambers locate at drug/culture medium injection layer. In organoid analysis module and drug injecting module, the valve control chambers locate at cell/organoid processing layer.

Fig. S3. The operations of drug injecting module. (a) The valve configuration of proportional mixer while administrating chemotherapy drugs. (b) The simulation of the mixing process of the proportional mixer. (c) The ink blending in the proportional mixer. (d) The valve configuration of proportional mixer while adding EGFR-TKIs. According to the latest NCCN guideline, EGFR-TKI should be used as a single agent while being considered as 1st-line medicine, no combined usage of different EGFR-TKIs is recommended. Under a configuration of proportional mixer while administrating chemotherapy drugs, pemetrexed and carboplatin were applied on PDOs with 4 different concentration ratios, matching a frequently-used clinical combination of pemetrexed and carboplatin; Under a configuration of proportional mixer while adding EGFR-TKIs, 4 kinds of EGFR-TKIs were independently directed to 4 organoid culture channels without mixing. In this work, 18 organoid chambers were divided into 6 channels. PDOs in 2 channels were without adding anti-cancer drugs, acting as a control group. PDOs in the rest 4 channels were exposed to anti-cancer drugs, acting as experimental groups. The configuration of both organoid chambers and proportional mixer can be easily adjusted according to different requirements.

Function Component Number

Fig. S4. Detailed operating procedures were initiated by using a specifically designed software running on a smartphone. The RDMO-System could be controlled using a specifically designed software running on a smartphone according to the therapeutic strategies and functional modes. The screenshot interface of the smartphone and operation procedure are displayed. No.1-8: eight-channel solenoid valves; No.9-16: eight-channel solenoid valves; No. 17/18: pressure pump; No. 19: control module. First, suspended cells dissociated from clinical samples were injected into the EDFR mutation detecting module for trapping single cell. Then, DNA-based nanorulers and cancer cells were simultaneously injected into the EDFR mutation detection and PDO culturing. EGFR mutation detection was accomplished during PDO culture. Finally, based on the result of EGFR mutation detection, PDO-based drug response test and monitoring were performed.

Fig. S5. The fabrication process of RDMO-Chip.

Briefly, 2 polydimethylsiloxane (PDMS) layers were separately fabricated and sequentially bonded to a glass substrate with alignment to form RDMO-Chip. The drug/culture medium injection layer was fabricated by casting PDMS onto a SU-8 mold which was coated and patterned on a 4-inch silicon wafer. The cell/organoid processing layer was formed by 2 times of PDMS casting. A silicon mold was fabricated by 2 times of inductively coupled plasma (dry) etching. As single cell processing and organoid culturing required different heights of microfluidic chambers, a SiO₂/Si₃N₄ mask for inductively coupled plasma (ICP) etching was formed by 2 times lithography with alignment and reactive ion etching (RIE).

Fig. S6. Dimensions of RDMO-Chip. The dimensions of RDMO-Chip are marked on an overlapped layout. The single cell tapping channel is with 600 trapping sites (6 lines, 100 trapping sites per line). Upper left enlarged figure shows 6 single cell trapping sites with dimensioning. The proportional mixer consists of 7 identical mixing channels. Upper right enlarged figure shows a mixing channel with dimensioning.

Fig. S7. Route design of the three-layered rectangular structure. The M13mp18 scaffold ssDNA (blue) is folded into the three-layered rectangular structure by massive staple strands. The 9 special staple strands extended by polyA for connecting EGF molecules are designed on the three-layered rectangular structure. For EGFR-DNR-25, the distance between purple and green special strands is 72 bp≈25 nm. For EGFR-DNR-100, the distance between purple and red special strands is 296 bp≈100 nm.

Fig. S8. Diverse fluorescence spectra of ATP-DNS and DNC to the response of ATP. Followed by the addition of 1-3 mM ATP respectively, sequential increases in fluorescence intensity of ATP-DNS are observed on 570 nm emission wavelength while DNC shows irregular fluorescence spectra. In addition, the fluorescence spectra of ATP-DNS and DNC show irregularity without ATP (0 mM ATP). These results demonstrate that ATP-DNS is sensitive to the response of ATP. The value of the fluorescence intensity of ATP-DNS excited is enhanced with the increase of ATP. As a negative control, DNC is incapable of responding to ATP.

Fig. S9. The cell viability data of A549 and H1975 cells treated with diverse drugs. (a) The cell viability of A549 cells detected by CCK-8 under the 40 µM of pemetrexed (showed P) or carboplatin (showed C) at hour 48. (b) The cell viability of H1975 cells detected by CCK-8 under the different concentrations of osimertinib (showed O) at hour 48. The results illustrate that cell viability is changing with the treatment of the drug types or concentrations, showing similar consistency with the variation of ATP detected by ATP detection kits and ATP-DNS.

Fig. S10. Fluorescent images of PDOs treated with IAA+ATP-DNS (colored red) and stained with Lyso-Tracker (colored green). Before being treated with ATP-DNS, PDOs were pretreated with IAA (100 μM) for 4 h to decrease ATP generation. The intracellular locations were stained by Lyso-Tracker. Confocal images show that no red fluorescent signal was excited, demonstrating that ATP-DNS has high specificity for recognizing ATP. Scale bars: 50 μm.

Fig. S11. The morphology of the PDOs treated by osimertinib. Organoids derived from (a) clinical sample 1 and (b) clinical sample 2 treated with osimertinib (20 nM) and osimertinib (40 nM) for 9 days. These bright images were captured every 3 days. The results illustrate that the PDOs from 2 clinical samples were inhibited with the increasing days, and showed no observable difference between groups treated with osimertinib (20 nM) and osimertinib (40 nM). O 20nM, osimertinib (20 nM). O 40nM, osimertinib (40 nM). Scale bars: 50 µm.

Fig. S12. The morphology of the PDOs treated by chemotherapy drugs. Organoids derived from 2 clinical samples were treated with different combinations of pemetrexed and carboplatin. These bright images were captured at day 6. The images demonstrate that there is no observable difference among these diverse chemotherapy treatments. P only, pemetrexed at 16 μ M. P:C=3:1, pemetrexed at 12 μ M and carboplatin at 4 μ M. P:C=1:3, pemetrexed at 4 μ M and carboplatin at 12 μ M. C only, carboplatin at 16 μ M. Scale bars: 50 μ m.

Table S1. Detailed sequences of EGFR-DNR.

Staple strands	Sequence (5'-3')
Strand 1	AACGGGTATTAAACCAAGTACAAATAATACGTTAAATTGTAGCGGGAGCACGTATAAC
Strand 2	TTGTAGCGTAAATGCTTTAAAATATTCCAGGAAGAAAT
Strand 3	CGGAACGAGGGTACAACTTTCTGTTTAGAAAAAATCAGGTCACGTATCGATGA
Strand 4	CGGAGTGAGAATACAGCAGCGGCTCATTAATTCATTAGCGGGGAGAGGCGGTT
Strand 5	GATGATACAGGAGTGTCAAATGGTAGTTTGACCTATCAGGTGC
Strand 6	TGCGTATTTCCTGTGTAGGACGTTTTTTGCAACAACTAAAAACCCATG
Strand 7	TAATTGCGTTGCGAACGAGTA
Strand 8	CCGATAGTTGCGCATCAGCTTGCCAAAAGAAGCAAACGGAACGCCAATTCGCA
Strand 9	CCACCCTCAGAGCCACATAGATAAAATACCAATCACACACGACCAGTA
Strand 10	CAGTATTAACACCGCCACAGAGGTTCCTGATTATTAATTTTACCAGAAAGTAAGCA
Strand 11	CGGTCCACAAAACGACACATTCAACTAATCTAACAGCTTGGAG
Strand 12	CAAAGGGCCCTAAAGGTAGGGCTTTTTATCAAAAATAGCACCCAAAAG
Strand 13	AGCAATACTCCATCACGATAGCTTATGTAATTATCAAGATTTGCGGGAGGTTTTGA
Strand 14	TGAATCTTACCAAAAACAATGAATCATAGTCAATATAACTCAAACAAA
Strand 15	GAATTTCTTAACATAAAAACAGTTAATTTCAGAGGCGCAGATTCACCAGTGCT
Strand 16	TAGGGTTGGGAAGAAAAAGCCTGCTATATGTCTAATATCATACATA
Strand 17	AGAGCCTAATTTGAGAATTGATCCGGCTTAATTACCTGAACAATATATTAGTC
Strand 18	CACCAGTGAGCTCGAAAACGAACTAGACGACGACGTTGAACCCTCATT
Strand 19	AGAACAAGCAAGCCGTTTTTATTTATCAATACTAGAAGCGAAAGGCAGAGCGGGAGCT
Strand 20	ATAAAAGGACAACTAAAGGATTTAGAAGTATTGCCACCCTAAAGGGCG
Strand 21	AAACAGGATGCAATGCGGCAAAGAATTAGCAACAGGTCAGGCGGGGTT
Strand 22	ACCCTTCTGAAGGTTATCGACAACTCGTATTAGAGCCACCAGGTAAAT
Strand 23	AGGAAACGAGGCCGGATATACTTCTTATCAGATGCCACGCTGAGAGCC
Strand 24	AAAACACTCATCTTTGACCCCAACCGGATTACCAGTCGAAATTGTCATTCAGGCTGCG
Strand 25	AAGTCAGAGGGTACCCAATCCATCATAATCAATAGATAAAGAATAGCCCGAGA
Strand 26	TGACAGGAGGTTGAGGAATTAAGCGGCTTAGATAAGCAAAGCCAGCTT
Strand 27	TGTACCCCCAAAAGGGTAGCATTAACATCCAACAAATAAAGCTGAGAC
Strand 28	GCCATTAAATGAAAAAGCGGAATTATCATCATTTAGCGTCACCATTAC
Strand 29	GGATTTTGCTAAAGCAACGGCTTGTGAATTCATTCAGCGTGCCAGCTGCATTA
Strand 30	GCGCATCGGCTGTCTTTCCTTAGAAACCAGGTTTGAACCGCCGCGCTTAACAC
Strand 31	GGAATCATTACCGCGCCCAATACAACATGTTATACAACGGCGAACGGGATTTTAGACA
Strand 32	AGTCCACTGGGAAAGCATTCTTACTTTTAACCGTTAAGCCTTACGCAG
Strand 33	AGGTGGCAAAATTATTCGTCAGATGCCCGAACAATCAACAGTTGAAAG
Strand 34	TACCGTTCCAGTAAGCCATTTGGGGTTGATTCACAAGAGATGGTGTAG

Strand 35	AGGCTTGCAGGGAATTTTTTCATAAAAACAGAGGAAGTGAGCGAGAGCCCCAA
Strand 36	TCACCGCCGCAGGTCGGAAAGATTTAAGAGCAAGGAGCCTCACCCTCA
Strand 37	TAATAAGAGCAAGCGCTAACGAGCCAACGATTCTGTCACGTGGACTCCAACGT
Strand 38	TCTGAAACCACTGAGTATTATAGTTTGCCAGACCATTCGCTATCCGCT
Strand 39	CGCCTCCCTCAGAGCCAGACTTTAAGAAACAAGGCCAACATCTGAAAT
Strand 40	AGAATCAAGTTTGCCTATTCCTGATGAATAATAACGAACCAACATCAC
Strand 41	TATGTTAGACCGACTTAATAAAGAAACATTATCAAACCCTCAATCAA
Strand 42	TTGTAAACTAAAAATTCTCAGAGCATAAAGCTGAGCCGCCGCCGTCGA
Strand 43	GAGGGTTGCCACCCTCCAGACCGGGAATTACGGCGATTAACCAAGCTT
Strand 44	ACGGTAATTCACCATCTGAAAAGGTGGCATCAGCGCAGTCCCTATTAT
Strand 45	AGAGTCTGTTCTTTGACGCTATTAGTTTGGATAACGTCACGTAGCGAC
Strand 46	CCATCGATAACAAAGTTCCCTTAGAATCC
Strand 47	AACCTAAAACGAAAGAGGCAAAAAGCTGCTACCTTATATACGAGCTGGTGCCGGAAAC
Strand 48	ACTACAACCCTGCCTAATATAACAGCGCGAGCAATATGATATTCAACC
Strand 49	TGTCGTCTTTCCAGACGT
Strand 50	TAGACGGGAGAATACGTCAAAAAATAAGGTCCCATCCGTTCCGAAATCGGCAA
Strand 51	TTCAGGGAAGAAGGATTAATGCTGACAGGCAACTGAGTAATGTGTAGG
Strand 52	CAGCCTTTACAGAGAGAATAAAATTTAATATCAATAAGCCCCAGCAGGCGAAA
Strand 53	ACAGTATCGGCCTATTGAATCGTAAATTGTGAGGAAGTTTCC
Strand 54	CAGTCGGGAAAGCCTGATTTCAACACTGCGGATTTTCTGTAGACAGCC
Strand 55	CGCCCACGCATAAGCTCCAAAACACTATCTTTAATTCTTCCTGTATATTTAAA
Strand 56	ATTAAACGGGTAAAATACGTA
Strand 57	TAGCTTTTTCAGGCTTGAGAACACCAGCTCACTGCCCGCTTTC
Strand 58	ACATTTCGACTGGTAATAAGT
Strand 59	TTAAATTTTTGCGGGAAAACATTATGACCCTGCACCCTCAGAATAGGT
Strand 60	TGAGGACTAAAGATAAATGAAATCGTCATAACAGTTCCGTGCATCTCATTGCC
Strand 61	ACATTCAATAAGTTTATACCTGAGGAAAACTTGCTTTGACTCACGCTG
Strand 62	AGAAAATTCATATTCAAAATCGCGCATCTTCTAGTTGCGCCGCTACAGGGCGC
Strand 63	TCACCGTCCAAACGTATTCATTTGAGGTTGGGCGATTAAAGTGGCGAG
Strand 64	GAGTGAGCTAACTCACAT
Strand 65	CCATATTATTTATATTGAGCGAAATGCTGACAAAATTAAAACGCTAATACGTG
Strand 66	AGATCTACAAAGGCATTAGATCCCCTCAACGATCTAAAGTTT
Strand 67	ATTTTGCAAGCCCTTTACGCTGAGTAAATCGTTTAGTAATACCAGCAG
Strand 68	AGAGCCAGTGATTAAGTACATAAAGTCTGAGACCAGAATCGATTTAGA
Strand 69	TCCTCAAGTAGCAAGCAAAGATTACAAAATAGAAGGGCGACATGGTCA

Strand 70	TACCGTAAATGAAAGTAACTAAAGAATAGTAGTGAGAAAGGCCGGAGA
Strand 71	TTTAACGGGGTCAGTGCC
Strand 72	CAGATATAGAAGGCTTATCCGGTAAAGTACTCAACAGGAGCCCCCCTGAGAAGTGTTT
Strand 73	AAAATCACCGGAACCAAATCCTTTGAATATACAGCGTAAGCATGGAAA
Strand 74	ATTGACGGACATATAATCAAGAAAATGCAAATGTTAGAATAGCGGGCG
Strand 75	GAGATAACCCACACCAGTTACCATATGCGTTCAGCTATCCAGTTTGGAACAAG
Strand 76	AACTGGCACAAAATCAACCATATCCAGAAGGATCTAAAGCATCACCTT
Strand 77	GGATCGTCACCCTGAAAGGAAAAGAAGTTCAGAAGCAGGAACAAACA
Strand 78	ATGAATCGCACAACGCGATTTTTAGTAAAAAACAGTTTCAGTACAA
Strand 79	CAGTTTGAGGGGACGACG
Strand 80	CATTAGCACAATAATATGCTTCTGAAGAGTCAGAGGCCACAGCACTAA
Strand 81	AGGAACCAATATCCAACAGGTCAGACACCGTACTCGGT
Strand 82	TGAGAGTCTGATAAATTGTTTAGCTATATTTTGTCATACATA
Strand 83	TATCATCGCCTGATAAATTGTGATGAACGTACAGGTAACTCTAGAGGCGAAAGGGGGGA
Strand 84	ATTGTATCGGTTTCGACAATGGAGATTTAACTGACCAAGAGAGTTGCAGCAAG
Strand 85	CCAAGCGCGAAACAAAGTACAGGCTGACCGTTAATAATTCGTAATTCGGTGCGGGCCT
Strand 86	AATCCCTTCTGGCAAGAAGAATAAAAGACAAACACCCTGACAAAGACA
Strand 87	AAAGCCAGAATGGAAAATTCTACTTACGGTGTTAGCATGTCGGCGGAT
Strand 88	ACGCGAGGCGTTTTAGCGAACAGTAATAAATTTAACATGCCGTAACGAGTAAA
Strand 89	TTGAAAACATAGCGCAAATTAAAATCAAG
Strand 90	GTAGGTTTACCAGCGCTTGCTTTGTACATTTGTAGATTAGAGCCGTCA
Strand 91	CCACGGAACCGATTGAACATCGGGCAAACAATTCTAAAATATCTTTAG
Strand 92	GCTATCTTACCGACCCAGCTAATCGCCATGAGAATATGTCTATCATGGGCGAT
Strand 93	TAATGCCCGCCTGTAGCATAAATCCTGGATAGACCGCTTCCGGAAGCA
Strand 94	CTCCAAAAAAAGCCGATATAAACATTATGTGTACAGAACAGCTGATTGCCCT
Strand 95	ATCCTGTTCACCACACATACCGACATATTTTAGGGAAGCGCAATCAAT
Strand 96	TTGCTCAGACCCTCAGTATCGCGTATAACCCTCGCCAGCTGGATCCCC
Strand 97	GGCCCACTGGTCGAGGACGCCAACAGATTAAGTTAAGAAAGGAAACCG
Strand 98	CCCTTATTAGCGTTTGGTTTGAGTAATTGCGTTGAATGGCTTACCGCC
Strand 99	ATTGCGAATAATAGTTAAAGGAAATCTACTTCATCAAGGGTGGTTTTTCTTTT
Strand 100	GAACCGCCTACCAGGCTTGCGGATAATAAAGCTTTAGAACCCTCATAT
Strand 101	TAAGAGGCGGTACCGTTGT
Strand 102	GATTTTTTGTTTATAACTGAAGAACGCGACAAAAGAACTCAATCGGAGATAGA
Strand 103	CCGCCACCAGAACCACCACCAAAATCGGTGCTCCTTTTTGTTAAATCAAAAA
Strand 104	ATGCCACTTGACGAGAATGGTTTAGGGTGCCTTCGCACTCCAGCC

Strand 105	GAGAGGGTAGCTATTTTTGAG
Strand 106	CTCATAGTAGTAACAGGTAGATTTCAATAACCTAATGCCG
Strand 107	CCTTGATATTCACAAATAAATCATTAGCTCAAATCAGAAATAACAACC
Strand 108	AAGATAAATGCAACAGTGATGGCAATTCATCACGTAATCACAATGAAA
Strand 109	TTTTTTGGACGTGAACGAGGCATTTTCGAGCCCTCCCGACTAGTTGCT
Strand 110	TTTAATGCTCAAATATCATTTTGCGGAACAAAATTTTCGGTGGGAATT
Strand 111	AGGTTTAGTACCGATATAAGTCTTTAATTTGTACCAAGAAGCCTTTATTTCAA
Strand 112	GCGCGTTTTCATCGGCGAAACCACAAAATTATATAGCCCTTATCGGCC
Strand 113	GATAGCCGAGCCTTAATAG
Strand 114	CGACCTGCTCCATGTTACTTAGGAACCGAGGAATACCGGCCAGTGGTTGGGTAACGC C
Strand 115	GCACAGACAGTTGGCAGTTATTAATTTTAAAACCATCTTTGTGAATTA
Strand 116	GCTTGACGATTAAAGACAGACGACGACAATAAAGCAAGCA
Strand 117	GAGCACTAGACATTCTTAACGGATATTTCAATTTTTGTCACAT
Strand 118	CGCAAGGAGTTAATATTGATAAGAAAGCGAACAGAACCGCTTA
Strand 119	CGTCGGATCTGTTGGGCGAGAGGCGGGAAGAACCGCTTTTATA
Strand 120	GGATTATTCTATGGTTTTTCAAATCGTGTGATAATGAAAAAAG
Strand 121	TAATTCGCGCTGCAAGAGGCATAGCATCAGTTACAACAACCCG
Strand 122	GCATGCCTTGGCCCTGACTTTGAAAGAGGACAGTCGAAATCAT
Strand 123	ATGGGCGCTTTCCGGCCGTCCAATTTTAATCATACAGAGGACC
Strand 124	TAAAGATTGGTTGATACATGTTTTTGCATCAACCAATAGGGGA
Strand 125	TACCTACACTTTCCTCCCAATCGCACACCGGAAAATAAGATCG
Strand 126	TTGCTGGTACGGTACGGACTACCTCAGTATAAAGCGTCTTAAT
Strand 127	GCTGAACCGCGAACTGTTGCACGTGGAAACAGACTCCTTACAA
Strand 128	CTAGGGCGATAAATCAAAGTCCTGAACAAGAACGCACTCAAAC
Strand 129	TAAAGTGTAAACCTGTTGAATAAGGCTTGCCCACGAAGGCCTT
Strand 130	CGCGTAACTGATGGTGTAATTTACGAGCATGTATCATTCCTAG
Strand 131	TAGCTGTTGGGCGCCAGAGTAATCTTGACAAGCAGCGATTGCG
Strand 132	GTTCTAGCTGGAGCAACCAATTCTAGAATGACCATTCCACATG
Strand 133	GAATTGAGGACCTGAAAGTAACAGAACAAACAAAGAAACGACA
Strand 134	AAACAACAGGAAATTACATAGGTTTAACATTAAAGTCATAATC
Strand 135	AGCATCGTAACAGAAAACGGCGAACGATGCCCGTATGGCTTTT
Strand 136	CTTATTAAATGCCCGAAAGGCTGAATATAGGATTAACGATTGG
Strand 137	TTAGTAGAAGATGTGAGTGTAGAACCTCCAGTAGCAGACTGTA
Strand 138	CAATCTCCGTGAAGCGGATAAATATGCATTAAGAGTCCTCATT
Strand 139	GGAAATATCCATTTTTAATAAAACAGAGAGCCATTTCATAGCC

Strand 140	GTGTTTTGACGGATGATGATACCTTTTGGGAGGGAACCGGAAC
Strand 141	CAGATGGGATAGGTCTTTATTCATTCCTTTCGGAATCTGAATT
Strand 142	GTATACATTGGAATTATTCTCGCCTGACAAAGACACAGAACCG
Strand 143	TGTGTCTGGCCGAGCTTCAGGTCATTTGGATAAGTGCCAGCAT
Strand 144	TAATACTTTTGTTAAAGTTGATTAGAGAGTACATAGCCCGGAG
Strand 145	CATTTTTGTTTTCCCGACGCAGATACATAACGCTTTCGAAGG
Strand 146	GACGTTGTGCTGGTTTGACGGTCAATCATAAGGCCGGAACATA
Strand 147	ATTTTAAAAGATTGTAGCTTAATTACTTCAAAAGCCACCAAAT
Strand 148	TCATCAACCGCTATTACGTTTACCAACGGAACTTCGGTCGTTG
Strand 149	GGGTACCGAGACGGGCACCAGGCGCATAGGCTACGGAGATCTG
0 nm special strand 1	AGCAGCAAAAATACCGGGAAGGGTAATAACCTACGGAATAATA
0 nm special strand 2	TTGCCTGATAATCAGTATAGTGAAAATTGAGACAATTTTAAGA
0 nm special strand 3	ATCGGAACGAAAAACCAAAAGTACCGACAAAAGGTATTCTATCC
0 nm-A special strand 1	AAAAAAAAAAAAAAAAAGCAGCAAAAATACCGGGAAGGGTAATAACCTACGGAATAATA
0 nm-A special strand 2	AAAAAAAAAAAAAAATTGCCTGATAATCAGTATAGTGAAAATTGAGACAATTTTAAGA
0 nm-A special strand 3	AAAAAAAAAAAAAAAATCGGAACGAAAAACCAAAGTACCGACAAAAGGTATTCTATCC
25 nm special strand 1	ATCTGGTCAATATTTTAGATTTTCTTAACAATGAAAATACAGA
25 nm special strand 2	AGCCATTGCAGGAGGCTTATATAATTTAGTATAAAATAAAGTA
25 nm special strand 3	AAAGGAAGAGTGTTGTATGCAGAACGCGCCTGTTTTCATCCAG
25 nm-A special strand 1	AAAAAAAAAAAAAAAATCTGGTCAATATTTTAGATTTTCTTAACAATGAAAATACAGA
25 nm-A special strand 2	AAAAAAAAAAAAAAAAAGCCATTGCAGGAGGCTTATATAATTTAGTATAAAATAAAGTA
25 nm-A special strand 3	AAAAAAAAAAAAAAAAAAAGGAAGAGTGTTGTATGCAGAACGCGCCTGTTTTCATCCAG
100 nm special strand 1	CAGTCAAACGTAAAACCTGGAAGTCCCTGACTTTCGTCACCAG
100 nm special strand 2	TGACCGTAGCAAAGCGGGGGGGTAAAAGAACTGAAAGACAGAC
100 nm special strand 3	CACAATTCGCCAACGCCCCAAATCAACGTAACAAGAATACCAT
100 nm-A special strand 1	AAAAAAAAAAAAAAAAAAAGTCAAACGTAAAACCTGGAAGTCCCTGACTTTCGTCACCAG
100 nm-A special strand 2	AAAAAAAAAAAAAAAATGACCGTAGCAAAGCGGGGGGTAAAAGAACTGAAAGACAGAC
100 nm-A special strand 3	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
PolyT	TTTTTTTTTTTT-SH-C6

Table S2. Detailed sequences of ATP-DNS.

Strands	Sequence (5'-3')
CY3-modified ATP	CY3-CAGTCACCTGGGGGGGGAGTATTGCGGAGGAAGGTAAAAAAAA
aptamer strands	
BHQ2-modified	CCCAGGTGACTG-BHQ2
short strands	
BHQ2-modified long	GCAATACTCCCCAGGTGACTG-BHQ2
strands	
ssDNA1	TTTTTTTTTTTTTTAAT ACA TTC CTA AGT CTG AAACAT TAC AGC TTG CTA CAC
	GAG AAG AGC CGC CAT AGT A
ssDNA2	TTTTTTTTTTTTTTAAT TAT CAC CAG GCA GTT GAC AGT GTA GCA AGC TGT
	AAT AGA TGC GAG GGT CCA ATA C
ssDNA3	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	GAATCT ACT ATG GCG GCT CTT C
ssDNA4	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	CGT TTG TAT TGG ACC CTC GCA T

A tetrahedral DNA framework was assembled with ssDNA1, ssDNA2, ssDNA3, and ssDNA4.

ATP-DNS was assembled with tetrahedral DNA framework and CY3-modified ATP aptamer strands linked with BHQ2-modified short strands.

DNC was assembled with tetrahedral DNA framework and CY3-modified ATP aptamer strands linked with BHQ2modified long strands.