1. Synthesis of Au NR@TiO₂ core-shell, Au NR-TiO₂ dumbbell structure in a batch reactor

To begin with, 0.5 mL of pre-prepared gold nanorods (Au NRs) were dispersed in 2 mL of water and subjected to five minutes of ultrasonication to ensure effective dispersion. Subsequently, 200 μ L of TiCl₃ was diluted in 4 mL of H₂O. In order to control the hydrolysis degree of TiCl₃ and obtain varying amounts of TiO₂, different volumes of 0.5 M NaHCO₃ solution were added dropwise to the reaction solution with continuous stirring. The Au NRs solution was then immediately injected. The resulting mixture was stirred at room temperature for 30 minutes, yielding a series of Au-TiO₂ nanostructures with distinct morphologies. As the concentration of NaHCO₃ decreased, the Au-TiO₂ nanocomposites could transform from a core-shell structure to a dumbbell structure. Finally, the samples were collected, washed twice with ethanol, and dispersed in deionized water.

When synthesized in a beaker, the concentration of sodium bicarbonate solution was 1 M. SEM images of the synthesized Au-TiO₂ nanostructures are shown below (Figure S1). Figure S1a shows the thick Au NR-TiO₂ core-shell structure synthesized with 1500 μ l of NaHCO₃ solution, while figure S1b shows the thin Au NR-TiO₂ core-shell structure synthesized with 1440 μ l of NaHCO₃ solution. The SEM images indicate that by varying the amount of sodium bicarbonate solution, the thickness of the outer TiO₂ layer of the Au NR-TiO₂ core-shell structure can be controlled.

Figure S1. SEM images of Au NR@TiO₂ core-shell nanocomposites with decreasing amount of NaHCO₃. (a) Au NR@thick-TiO₂, NaHCO₃:1500 μL; (b) Au NR@thin-TiO₂, NaHCO₃:1440 μL;

As the amount of NaHCO₃ solution is further reduced, SEM images reveal a transition of the Au NR-TiO₂ nanocomposite structure from a core-shell morphology to dumbbell-like structure. Moreover, as the volume of NaHCO₃ continues to decrease, the TiO₂ at both ends of the dumbbell-shaped Au NR-TiO₂ structure also decreases. The NaHCO₃ volumes for Figures S2a, b, and c are 1380 μ L, 1320 μ L, and 1260 μ L, respectively.

Figure S2. SEM images of Au NR-TiO₂ dumbbell-like nanocomposites with decreasing amount of NaHCO₃: (a) 1380 μ L; (b) 1320 μ L; (c) 1260 μ L.

2. Synthesis of Au NR-TiO₂ dandelion structure in a batch reactor

To start, 0.2M CTAB solution was added to 1.3 mL of water, followed by the addition of 0.5 mL of pre-prepared gold nanorods (Au NRs), and subjected to five minutes of ultrasonication for dispersion. Subsequently, 200 μ L of TiCl₃ was diluted in 4 mL of H₂O, then 700 μ L of 1M NaHCO₃ solution was added dropwise to the TiCl₃ solution with continuous stirring. The pre-prepared CTAB-Au NRs solution was then immediately added, and the mixture was stirred at room temperature for half an hour. Finally, the samples were washed twice with ethanol and dispersed in deionized water.

Figure S3. SEM images of Au NR-TiO₂ dandelion-like nanocomposites with decreasing amount of NaHCO₃ (700 μ L).

3. Morphological characterization after photocatalysis

Figure 4 shows the SEM images of the core-shell and dumbbell structures of Au NR-TiO₂ after photocatalysis. Based on the analysis of SEM images, it can be observed that the overall morphology of the Au NRs-TiO₂ nanocomposites remains unchanged before and after catalysis.

Figure S4. SEM images of the core-shell (a) and dumbbell (b) structures of Au NR-TiO₂ after photocatalysis

4. X-Ray Diffraction (XRD) result

The XRD pattern provides further evidence for the formation of TiO_2 shell crystals only the typical diffraction peaks indicating that the TiO_2 shell is amorphous.

Figure S5. XRD result of Au NR@TiO2 core-shell nanostructures