1	Supporting Information
2	A cheaper substitute for HRP: Ultra-small Cu-Au bimetallic enzyme mimics with infinitesimal
3	steric hindrance to promote catalytic lateral flow immunodetection of clenbuterol
4	Huilan Hu ^{a, 1} , Jiaqi Tian ^{a, 1} , Rui Shu ^a , Huihui Liu ^{b,*} , Shaochi Wang ^a , Xuechi Yin ^a , Jianlong Wang ^a
5	and Daohong Zhang ^{a, *}
6	^a College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling,
7	712100, Shaanxi, China
8	^b Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and
9	Environment Research Institute, No. 216 Changjiang Road, Economic and Technological
10	Development Zone, 264006, Yantai, Shandong, China
11	
12	
13	
14	¹ Huilan Hu and Jiaqi Tian contributed equally to this work.
15	*Correspondence author: zhangdh@nwsuaf.edu.cn (D. Zhang), liuhh615@163.com)

16 Figure S1. UV-vis absorption spectra of the USCG, and USCG-mAb.17

- 18 Figure S2. Optimization results of (a) the amount of anti-CLE mAb and (b) the volume of Au NPs-
- 19 mAb probe. Detection results of (c) the CLE standard solution by the Au NPs-LFIA.

Ractopamine

20 Figure S3. Chemical structures of the target analyte and tested interfering substances.

Sample	Spiked (µg L ⁻¹ /µg kg ⁻¹)	Found (µg L ⁻¹ /µg kg ⁻¹)	Recovery (%)	SD (%)
	0.5	0.54 ± 0.02	107.21	1.66
Milk	1	1.06 ± 0.01	106.32	0.91
	2	2.02 ± 0.05	100.99	5.31
	0.5	0.57 ± 0.05	115.07	5.29
Mutton	1	1.09 ± 0.03	109.55	2.56
	2	1.97 ± 0.05	98.53	5.16
	0.5	0.58 ± 0.05	117.79	5.42
Pork	1	1.01 ± 0.01	100.54	1.15
	2	1.98 ± 0.01	99.04	0.51

21 Table S1. Recovery analysis of CLE in actual samples

Materials	iterials Km (mM)		Vmax (10 ⁻⁸ M s ⁻¹)		Reference
	ТМВ	H_2O_2	ТМВ	H_2O_2	
HRP	0.432	3.702	10.00	8.71	1
Au@Pt	0.020	76.000	2.91	0.75	2
Cu-hemin MOFs	1.420	2.180	26.22	116.00	3
Cu(OH) ₂ SCs	2.448	0.199	44.80	42.50	4
CuMnO ₂	0.577	27.653	8.15	27.65	5
CuO	0.025	0.400	10.49	16.10	6
RhNPs	0.198	0.380	6.78	24.10	7
CuS-PDA-Au	0.1082	0.229	102.9	16.56	8
USCG	0.013	0.107	81.32	20.75	This work

23 Table S2. Comparison of Michaelis-Menten constants (Km) and maximum initial reaction rates
24 (Vmax) of the peroxidation reaction catalyzed by USCG, HRP, and other peroxidase-like nanozymes

Detection method	Linear range (ng mL ⁻¹)	cLOD (ng mL ⁻¹)	Reference
Molecularly imprinted polymer-	1 50	0.3	0
lateral flow immunoassay	1–30		7
Integrated immunomagnetic			
separation-fluorescence lateral flow	0.25–5	0.16	10
immunoassay			
Streptavidin magnetic particles-	0.5.40	0.167	11
fluorometric immunoassay	0.5-40		
GO/AuNPs-surface-enhanced Raman	0.5.20	0.5	12
spectroscopy	0.3–20		
SeNPs-lateral flow immunoassay	-	3	13
MoS2-Au-polyethylenimine	10, 2,000	1.92	14
modified-glassy carbon electrode	10–2,000		
Molecularly imprinted			
polymers@Upconversion particles-	5-100	0.12	15
fluorescence analysis			
S/N-doped carbon quantum dots-	0.07.1.7	0.022	16
fluorometric immunoassay	0.07-1.7	0.023	10
Fe ₃ O ₄ microspheres-immunoassay	0.1-10	0.02	17
CdSe quantum dots-			
electrochemiluminescent	0.05-1000	0.02	18
immunosensor			
AuNPs-rhodamine 6G-fluorescence	0.02.5.0	0.01	19
inner filtration immunoassay	0.03–5.0		
Gold nanoparticles-surface-enhanced	0.0001.01	0.0001	20
Raman spectroscopy	0.0001–0.1		20
Fe ₃ O ₄ @AuNPs- surface-enhanced		0.0*10.7	21
Raman spectroscopy	-	2.2*10*/	21
USCA-based LFIA	0.05-1	0.03	This work

Table S3. Comparison of analytical performances for CLE detection by different methods 27 immunoassays

Item	Composition	Optimized condition	
C line	Goat anti-mouse IgG	2 mg mL ⁻¹ , 0.5 μL cm ⁻¹	
T line	CLE-BSA	$0.4 \text{ mg mL}^{-1}, 0.5 \mu \text{L cm}^{-1}$	
Blocking buffer for sample pad	Phosphate buffer saline	2% BSA in PBS	

29 Table S4. Optimal assay conditions for the USCG-based LFIA

31 References

- L. Luo, L. Huang, X. Liu, W. Zhang, X. Yao, L. Dou, X. Zhang, Y. Nian, J. Sun and J. J. I. c.
 Wang, 2019, 58, 11382-11388.
- X. Hu, A. Saran, S. Hou, T. Wen, Y. Ji, W. Liu, H. Zhang, W. He, J.-J. Yin and X. J. R. a. Wu,
 2013, 3, 6095-6105.
- 36 3. F. Liu, J. He, M. Zeng, J. Hao, Q. Guo, Y. Song and L. J. J. o. N. R. Wang, 2016, 18, 1-9.
- 37 4. R. Cai, D. Yang, S. Peng, X. Chen, Y. Huang, Y. Liu, W. Hou, S. Yang, Z. Liu and W. J. J. o. t.
 38 A. C. S. Tan, 2015, 137, 13957-13963.
- J. Hu, R. Huang, Y. Sun, X. Wei, Y. Wang, C. Jiang, Y. Geng, X. Sun, J. Jing, H. Gao, Z. Wang
 and C. Dong, J. Microbiol. Methods, 2019, 158, 25-32.
- 41 6. A. P. Nagvenkar, A. J. A. a. m. Gedanken and interfaces, 2016, 8, 22301-22308.
- 42 7. T. G. Choleva, V. A. Gatselou, G. Z. Tsogas and D. L. J. M. A. Giokas, 2018, 185, 1-9.
- 43 8. Y. Wang, Y. Liu, F. Ding, X. Zhu, L. Yang, P. Zou, H. Rao, Q. Zhao, X. J. A. Wang and b.
 44 chemistry, 2018, 410, 4805-4813.
- 45 9. H. Zhou, Z. Zhang, D. He, Y. Hu, Y. Huang and D. J. A. c. a. Chen, 2004, 523, 237-242. √
- 46 10. Z. Huang, Z. Xiong, Y. Chen, S. Hu, W. J. J. o. a. Lai and f. chemistry, 2019, 67, 3028-3036.
- 47 11. T. Peng, J. Wang, S. Zhao, S. Xie, K. Yao, P. Zheng, S. Wang, Y. Ke and H. Jiang, Mikrochim
- 48 Acta, 2018, 185, 366. √
- 49 12. J. Cheng, X.-O. Su, S. Wang and Y. J. S. r. Zhao, 2016, 6, 1-10.
- 50 13. Z. Wang, J. Jing, Y. Ren, Y. Guo, N. Tao, Q. Zhou, H. Zhang, Y. Ma and Y. J. M. L. Wang,
 51 2019, 234, 212-215.
- 52 14. Y. Yang, H. Zhang, C. Huang, D. Yang, N. J. B. Jia and Bioelectronics, 2017, 89, 461-467. √
- 53 15. Y. Tang, Z. Gao, S. Wang, X. Gao, J. Gao, Y. Ma, X. Liu, J. J. B. Li and Bioelectronics, 2015,
 54 71, 44-50.
- 55 16. D. Yao, A. Liang and Z. Jiang, Microchimica Acta, 2019, 186, 1-9.
- 56 17. K. Fan, D. Li, H. Liu and J. Wu, Instrumentation Science & Technology, 2015, 43, 5, 524-535.
- 57 18. X. Yao, P. Yan, Q. Tang, A. Deng and J. Li, Analytica Chimica Acta, 2013, 798, 82-88.
- 58 19. F. Peng, B. Li, S. Sun, F. Mi, Y. Wang, C. Hu, P. Geng, L. Pang, M. Guan and J. Li, European
 Food Research and Technology, 2022, 1-12.
- 60 20. G. Zhu, Y. Hu, J. Gao and L. Zhong, Analytica Chimica Acta, 2011, 697, 1-2, 61-66.
- 61 21. C. Wei, C. Zhang, M. Xu, Y. Yuan and J. Yao, Journal of Raman Spectroscopy, 2017, 48, 1307-
- 62 1317.