Electronic Supporting Information for:

Al(III)-based MOF for the selective adsorption of phosphate and arsenate from aqueous solutions

Juan L. Obeso^{1,2}, Herlys Viltres³, Catalina V. Flores^{1,2}, Valeria B. López-Cervantes², Camilo Serrano-Fuentes¹, Amin Reza Rajabzadeh³, Seshasai Srinivasan³, Ricardo A. Peralta^{4*}, Ilich A. Ibarra^{2,5*} and Carolina Leyva^{1*}

¹Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, México.

²Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, México. E-mail: argel@unam.mx; Fax: +52(55)5622-4595.

³School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, ON, L8S 4L8, Canada.

⁴Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, México.

⁵On sabbatical as "Catedra Dr. Douglas Hugh Everett" at Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Ciudad de México, Mexico.

Table of contents

S1. Experimental details	S3
S2. Results and Discussions	S9
S3. References	S25

S1. Experimental details

Analytical instruments

Powder X-Ray Diffraction Patterns (PXRD)

PXRD was recorded on a Rigaku Diffractometer, Ultima IV, with Cu-K α 1 radiation ($\lambda = 1.5406$ Å) using a nickel filter. The patterns were recorded in the range 2–50° 2 θ with a step scan of 0.02° and a scan rate of 0.08° min⁻¹.

Fourier-transform infrared spectroscopy (FT-IR)

FT-IR spectra were obtained in the range of 4000-500 cm⁻¹ on a Shimadzu IRTracer-100 spectrometer using KBr pellets.

Thermal gravimetric analysis (TGA)

TGA was performed using a TA Instruments Q500HR analyzer under an N_2 atmosphere using the high-resolution mode (dynamic rate TGA) at a 5 °C min⁻¹ scan rate from room temperature to 700 °C.

Nitrogen adsorption-desorption

Nitrogen adsorption-desorption isotherms were measured by a volumetric method using a Micromeritics ASAP 2020 gas sorption analyzer. The sample mass employed was 65.0 mg. Free space correction measurements were performed using ultra-high purity He gas (UHP grade 5, 99.999% pure). Nitrogen isotherms were measured using UHP-grade Nitrogen. All nitrogen analyses were performed using a liquid nitrogen bath at 77 K. Oil-free vacuum pumps were used to prevent contamination of the sample or feed gases.

The zeta potential

The zeta potential was measured using NanoPlus HD sizer equipment (Micrometrics, USA). Zeta potential values for the DUT-5 were measured in a 2-9 pH range. A minimum of 3 measurements per sample was done at room temperature. The variation of pH was carried out using 0.01 M NaOH and 0.01 M HNO₃ solutions.

X-Ray Photoelectron Spectroscopy (XPS)

XPS analyses were carried out with a Thermo Scientific K-alpha X-ray photoelectron spectrometer working at 72 W and equipped with a hemispherical analyzer and a monochromatic. Survey scans were recorded using 400 µm spot size and fixed pass energy of 200 eV, whereas high-resolution scans were collected at 20 eV of pass energy. Spectra have been charged and corrected to the mainline of the carbon 1s spectrum (adventitious carbon) set to 284.8 eV. Spectra were analyzed using CasaXPS software (version 2.3.14). Spectral backgrounds were subtracted using the Shirley method. Curve fitting procedures and elemental quantifications were performed with the CasaXPS program (version 2.3.14).

Scanning electron microscope (SEM)

SEM was measured with a Hitachi S-4300, Japan, with increments of 1000, 5000, and 10000 x at 20 kV.

Arsenate and Phosphate Adsorption Experiments.

Effect of dosage

The effect of dosage was investigated for 5, 10, 15, and 20 mg of DUT-5 with 30 mL of arsenate or phosphate solutions (30 mg L^{-1}).

Influence of pH on the adsorption

Experiments were carried out in the pH range of 4-8 with 30 mL of arsenate or phosphate (30 mg L^{-1}) solutions using 10 mg of DUT-5 for phosphate solutions and 15 mg of DUT-5 for arsenate solutions at a specific pH value. The pH values were adjusted using 0.1 mol L^{-1} HNO₃ and NaOH. The pH measurements were conducted using a ThermoScientific pH meter.

Influence of contact time

Contact time was studied using 90 mL of arsenate or phosphate solution (30 mg L^{-1}), taking 1 mL of sample each time. The samples were analyzed at the following times 0, 5, 15, 30, 90, 120, 180,

300, 480, 720, and 1440 min for arsenate and 0, 5, 10, 15, 30, 60, 150, 180, 300, 390, 480, and 1440 min for phosphate.

Influence of initial concentration

The initial concentration experiments were conducted at room temperature for 24 h using DUT-5 with different arsenate (10, 20, 30, 50, 90, 120, and 150 mg L^{-1}) or phosphate (10, 20, 30, 50, 70, 90, 120, and 150 mg L^{-1}) concentrations using 10 mg of DUT-5 for phosphate solutions and 15 mg of DUT-5 for arsenate.

Influence of coexistences ions and phosphate and arsenate competition

The influence of coexistence ions was performed using 1 milliequivalent of Cl⁻, NO₃⁻, SO₄²⁻, Mg²⁺, and Ca²⁺ using 10 mg of DUT-5 for phosphate solutions and 15 mg of DUT-5 for arsenate, with 30 mL of solution (30 mg L⁻¹) for each experiment. For phosphate and arsenate competition, 15 mg of DUT-5 with 30 mL and 30 mg L⁻¹ of each pollutant (phosphate, arsenate, dichromate, permanganate, and perchlorate) solution was implemented.

Reusability

The reusability of DUT-5 was tested for three adsorption-desorption cycles using 0.01 M HCl for arsenate and 0.01 M Na₂CO₃ for phosphate as desorbing agents for 24 h.

Effect of temperature

For evaluating the effect of temperature, 30 mL of arsenate or phosphate solution (30 mg L⁻¹) using 10 mg of DUT-5 for phosphate solutions and 15 mg of DUT-5 for arsenate was varied on three points (25, 40, and 60 °C). The Vant Hoff equation (Eq. (1)) was used to estimate the thermodynamic parameters. The change in free energy (ΔG°), change in enthalpy (ΔH°), and change in entropy (ΔS°) were calculated using Eq. 1 and 2. Where K_c (Eq. (3)) is the equilibrium constant, R (8.314 Jmol⁻¹K⁻¹) is the gas constant, and T (K) is the adsorption temperature.

$$Ln(K_c) = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT} \quad (1)$$

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \qquad (2)$

$$K_c = \frac{Q_e}{C_e} \quad (3)$$

Table S1. Kinetics	models for the DS adsorption	
Kinetic model	Linear equation	Parameter
PFO model	$\log (q_e - q_t) = \log (q_e) - (\frac{k_{p1}}{2.303} * t)$	<i>qe</i> : adsorption capacities at equilibrium (mg g^{-1}); <i>qt</i> :
		adsorption capacities at time
		t (mg g ⁻¹); k_{p1} : pseudo-first-
		order rate constant for the
		kinetic model (mg g^{-1} min).
PSO model		qe: adsorption capacities at
	$\frac{\overline{q}_{t}}{q_{t}} - \frac{\overline{q_{e}^{2} * k_{2}}}{q_{e}^{2} * k_{2}} + \frac{\overline{q}_{e}}{q_{e}} * t$	equilibrium (mg g ⁻¹); <i>qt</i> :
	$h = k_{p2} * q_e^2$	adsorption capacities at time
		t (mg g ⁻¹); k_{p2} : pseudo-
		second-order rate constant
		of adsorption (mg g^{-1} min);
		<i>h</i> : initial adsorption rate
		$(mg g^{-1} min^{-1}).$

Elovich model	$q_t = \frac{1}{\beta} \ln \left(\alpha * \beta \right) + \frac{1}{\beta} ln^{(i)}(t)$	<i>qt</i> : adsorption capacities at
	ρρ	time t (mg g ⁻¹); α :
		adsorption equilibrium
		constant (mg $g^{-1} min^{-1}$);
		eta:equilibrium constant
		desorption (g mg $^{-1}$).
IPD model	$q_t = k_{kip} * \sqrt{t} + C_i$	<i>qt</i> : adsorption capacities at
		time t (mg g ⁻¹); Kip: rate
		parameter of stage $i (mg g^{-1})$
		$\min^{-1/2}$); <i>Ci</i> : intercept of
		stage <i>i</i> that gives an idea
		about of the thickness of
		boundary layer (mg g^{-1}).

Adsorption isotherms experiments

Non-linear equation	Parameter
$Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$	Q_m is maximum adsorption capacity (mg g ⁻¹); <i>qe:</i> amount
$R_L = \frac{1}{1 + K_L C_o}$	of adsorbate in the adsorbent at
$\Delta G(kJ/mol) = -RTlnKo$ $Ko = K_L * MM * 10^3$	equilibrium (mg g ⁻¹); K_L is adsorption intensity or
	$Q_e = \frac{Q_m K_L C_e}{1 + K_L C_e}$ $R_L = \frac{1}{1 + K_L C_o}$ $\Delta G(kJ/mol) = -RTlnKo$ $Ko = K_L * MM * 10^3$

		Langmuir coefficient (L mg ⁻¹);
		R_L is separation factor; Δ_G free
		Gibbs energy (kJ mol ⁻¹). MM:
		Molar mass (g mol ⁻¹)
Freundlich	$Q_e = K_F C_e^{1/n}$	K_F is the constant indicative of
		the relative adsorption capacity
		(L g ⁻¹) and <i>n</i> is indicative of
		the intensity
Temkin	$Q_e = \frac{RT}{1} * ln^{[n]}(At * Ce)$	At: Temkin isotherm
	bt	equilibrium binding constant
	$B = \frac{RT}{bt}$	(L g ^{-1}); <i>bt</i> : Temkin isotherm
		constant; R: universal gas
		constant (8.314J mol ⁻¹ K ⁻¹); <i>T</i> :
		Temperature at 298 K; <i>B</i> :
		Constant related to heat of
		sorption (J mol ⁻¹)

S2. Results and Discussions

Synthesis of DUT-5

PXRD

Fig. S1. PXRD patterns of DUT-5 reported and DUT-5 as-synthetized.

FTIR

Fig. S2. FTIR spectra of synthesized DUT-5.

Nitrogen adsorption-desorption

Fig. S3. Nitrogen ads/des isotherm of DUT-5.

Fig. S4. TGA thermogram of DUT-5.

DUT-5 stability

Fig. S5. The PXRD patterns of DUT-5 at different pH values.

Fig. S6. Nitrogen ads/des isotherm of DUT-5 after the stability test.

The zeta potential

Fig. S7. The Zeta potential of DUT-5.

Fig. S8. Chemical speciation of phosphate.

Fig. S9. Chemical speciation of arsenate.

Table S3. Comparison of the maximum Langmuir adsorption capacity of DUT-5 with the MOF-based adsorbents reported in the

literature.

MOF-Based	nH	[As]	[P]	t (h)	<i>q</i> _e	BET	Interaction	Ref
Sorbent	pn	(mg L ⁻¹)	(mg L ⁻¹)	t (II)	(mg g ⁻¹)	(m ² g ⁻¹)		Ku
UiO-66	7.6	10-300	-	3	89.3	1041	Anion exchange	
UiO-66-36-AA	7.6	10-300	-	3	103.4	1295	Adsorption on the missing linker sites	[]
UiO-66-12- TFA	7.6	10-300	-	3	138.4	1546	Adsorption on the missing linker sites	
MIL-88B(Fe)	6	1-10	-	12	156.7	214	Coordination bond to oxygen center	[2]
MIL-100(Fe)	7	10-200	-	12	110	1370	Coordination bond to unsaturated Fe(III) sites	[3]
MIL-53(Al)	5	-	-	11	105.6	920	Electrostatic attraction and hydrogen bond	[4]
Zn-MOF-74	7	up 800	-	2.5	320.5	604	The bond between open-metal sites	[5]
Fe-Co-MOF- 74	4.3	1-250	-	12	292	148	Electrostatic, hydroxyl, and metal- oxygen interaction	[6]

Fe ₃ O ₄ @MIL- 101(Cr)	7	-	-	24	80	2270	Chemisorption	[7]
MOF-808	8.3	5-125	-		106	922	Ligand exchange and electrostatic	
	5.6	-	5-125	24	180		attractions	[8]
0.75La-MOF-	8.3	5-125	-		214	388	Ligand exchange and electrostatic	
808	5.6	-	5-125	-	288		attractions	
Ce-BDC	7	_	20-125	2	179	1255	Ion exchange between the hydroxyl group at the missing linker sites	[9]
HP-UiO- 66(Zr)-OA	6.5	_	3-30	24	186.6	651.5	Complexation via hydroxyl groups for	[10]
HP- UiO66(Zr)-BA					80.2	948.2	defects sites	
Zn-ZIF-72	7	-	1-200	12	102	763	Chemical bonding and electrostatic interactions	[11]
NH ₂ -MIL- 101(Al)	5.5	-	5-100	2	79.42	2011.47	Electrostatic attraction and ligand exchanged	[12]

NH ₂ -MIL- 101(Fe)		-		2	87.65	2689.75		
Fe/Al(0.5)- MIL-101	6	-	5-200	12	90	1180	Ligand exchanged	[13]
Gd-PTA	7	-	10-150	24	206.13	15.14	Ion exchange and interaction via open metal sites	[14]
Fe-Al-MOF	7	-	2-100	24	38.33	533	Ligand exchange, electrostatic attraction, and chemical adsorption	[15]
DUT-5	6.5	10-150	-	24	131.32	1616	Ligand exchange and electrostatic attraction	This work
	6.5	-	10-150	24	233.26		Ligand exchange	1

Kinetic adsorption experiments

Table S4. Parameters of the kinetic models.								
Madal	Daramatar	Pollu	utant					
WIGUEI		Arsenate	Phosphate					
	$q_{\rm e} (mg g^{-l})$	20.92	24.26					
PFO model	$K_1 (mg g^{-1} min^{-1})$	0.003	0.006					
	R^2	0.951	0.982					
	$q_{\rm e} (mg g^{-1})$	45.62	73.86					
PSO model	$K_2 (mg g^{-1} min^{-1})$	0.0006	0.001					
	h	1.22	6.13					
	R^2	0.997	0.999					
Elovich model	$\beta (mg g^{-1})$	0.22	0.18					
	$\alpha (mg g^{-1} min^{-1})$	13.30	657.98					
	R^2	0.978	0.970					
	$K_{ip1} (mg g^{-1} min^{-1})$	1.003	1.80					
	$C_{\rm i} (mg g^{-l})$	18.56	42.51					
	R^2	0.999	0.920					
IPD model	$K_{ip2} (mg g^{-1} min^{-1})$	0.69	1.12					
n D model	$C_i (mg g^{-1})$	25.05	50.06					
	R^2	0.936	0.982					
	$K_{ip3} (mg g^{-1} min^{-1})$	0.13	0.008					
	$C_i (mg g^{-1})$	40.12	72.99					
	R^2	0.999	0.999					

Adsorption isotherms

Table S5. Parameters of the isotherm's models.								
Model	Paramotor	Poll	utant					
		Arsenate	Phosphate					
	$K_{\rm F} (L g^{-1})$	8.14	30.27					
Freundlich	n	1.85	2.39					
	χ^2	76.86	65.58					
	R^2	0.9512	0.9854					
Langmuir	$Q_{\rm m} (mg g^{-l})$	131.32	233.26					
	$K_{\rm L} (L mg^{-1})$	0.024	0.048					
	R _L	0.21-0.81	0.12-0.67					
Langmun	$\Delta G (kJ mol^{-1})$	-21.69	-20.89					
	χ^2	142.30	382.20					
	R^2	0.9196	0.9151					
	$A_{t}(L g^{-1})$	0.334	1.009					
	b_{t}	97.43	61.03					
Temkin	$B (J mol^{-1})$	25.43	40.60					
	χ^2	125.52	295.73					
	R^2	0.9098	0.9344					

Parameters of the thermodynamic experiments

Fig. S10. Standard free energy change of adsorption for phosphate and arsenate on DUT-5.

Table S6. Parameters of the thermodynamic model								
			Function					
Pollutant	T (K)	ΔS°	ΔH°	ΔG°	D2			
		(kJ mol ⁻¹ K ⁻¹)	(kJ mol ⁻¹)	(kJ mol ⁻¹)	Λ			
Arsenate	298	0.051	15.26	-0.03	0.927			
	313	0.051	15.20	-0.80				
	333			-1.82	-			
	298	0 136	37.05	-3.53				
Phosphate	313	0.150	37.05	-5.57	0.994			
	333			-8.30				

SEM of the adsorbent before and after the adsorption experiment

a)

Fig. S11. SEM images for a) DUT-5, b) DUT-5 after arsenate removal and c) DUT-5 after phosphate removal.

The state of the australiant before and after the australiant experiment	XPS	data	of the	adsorbent	before	and	after	the	adsor	ption	experimen	ıt
--	-----	------	--------	-----------	--------	-----	-------	-----	-------	-------	-----------	----

Table S7. XPS survey data (atomic percentage) of the different elements in the materials.							
Elements (At. %							
Samples	C 1s	O 1s	N 1s	Al 2p	As 3d	Р 2р	
DUT-5	70.0	20.8	0.2	9.0	-	-	
DUT-5 + Arsenate	64.7	22.6	0.4	9.2	2.4	-	

DUT-5 + Phosphate	60.9	29.6	-	8.0	-	1.5
-------------------	------	------	---	-----	---	-----

Table S8. The peak-fitting results of As 3d5/2 high-resolution signal of materials.					
Samples	Assignment	E _B (eV)	FWHM (eV)	At. %	
NaH2AsO4	As3d _{As(III)-O}	44.4	1.8	4.6	
1	As3d _{As(V)-O}	46.0	1.4	95.4	
	As3d As(III)-O	42.1	1.7	18.2	
DUT-5 + Arsenate	As3d As(III)-O	44.5	1.8	46.3	
	As3d _{As(V)-O}	46.2	1.9	35.5	

Table S9. The peak-fitting results of P 2p3/2 high-resolution signal of materials.					
Samples	AssignmentEB (eV)FWHM (eV)At. %				
DUT-5 + Phosphate	Р 2р _{3/2 М-РО4}	134.1	1.8	100	

Table S10. The peak-fitting results of O 1s high-resolution signal of materials.						
Samples	Assignment	E _B (eV)	FWHM (eV)	At. %		
	O1s _{Al-O}	530.5	1.5	12.4		
DUT-5	O1s _{C=O}	531.6	1.6	42.1		
2010	O1s _{C-OH}	532.7	1.7	37.4		
_	O1s Water	534.1	1.8	8.0		
DUT-5 + Arsenate	O1s _{Al-O}	530.6	1.4	11.3		
	O1s _{C=O}	531.6	1.5	37.3		
	O1s _{C-OH}	532.7	1.7	38.6		
	O1s Water	533.9	1.8	12.8		

DUT-5 + Phosphate	O1s _{Al-O}	530.4	1.5	12.7
	O1s _{C=0}	531.7	1.6	54.0
	O1s _{C-OH}	532.6	1.6	27.2
	O1s Water	533.8	1.7	6.0

Table S11. The peak-fitting results of C 1s high-resolution signal of materials.						
Samples	Assignment	E _B (eV)	FWHM (eV)	At. %		
	C1s _{C=C} aromatic	284.1	1.4	33.8		
DUT-5	C1s _{C-C/C-H}	285.0	1.5	48.0		
	C1s _{C-OH/C-O}	286.2	1.8	11.4		
	C1s _{O-C=O}	288.9	1.9	6.7		
DUT-5 + Arsenate	C1s _{C=C aromatic}	284.3	1.4	25.2		
	C1s _{C-C/C-H}	285.0	1.5	56.4		
	C1s _{C-OH/C-O/C-N}	286.3	1.7	12.8		
	C1s _{O-C=O}	289.1	1.9	5.7		
	C1s _{C=C} aromatic	284.1	1.4	8.1		
DUT-5 +	C1s _{C-C/C-H}	285.0	1.5	81.0		
Phosphate	C1s _{C-OH/C-O/C-N}	286.6	1.1	2.8		
	C1s _{O-C=O}	289.0	1.3	7.5		

Table S12. The peak-fitting results of Al 2p3/2 high-resolution signal of materials.

Samples	Assignment	E _B (eV)	FWHM (eV)	At. %
DUT-5	Al 2p _{3/2 Al(III)}	74.5	1.7	100
DUT-5 + Arsenate	Al 2p _{3/2 Al(III)}	74.7	1.6	100
DUT-5 + Phosphate	Al 2p _{3/2 Al(III)}	74.7	1.7	100

Adsorption-desorption cycles

Fig. S12. PXRD patterns of DUT-5 as-synthetized (wine line), after one cycle (brown line), and after three cycles (red line) of arsenate adsorption.

Fig. S13. PXRD patterns of DUT-5 as-synthetized (blue line), after one cycle (green line), and after three cycles (light blue line) of phosphate adsorption.

S3. References

- N. Assaad, G. Sabeh, M. Hmadeh, Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water, ACS Appl. Nano Mater. 3 (2020) 8997– 9008. https://doi.org/10.1021/acsanm.0c01696.
- [2] S. Hou, Y. Wu, L. Feng, W. Chen, Y. Wang, C. Morlay, F. Li, Green synthesis and evaluation of an iron-based metal–organic framework MIL-88B for efficient decontamination of arsenate from water, Dalt. Trans. 47 (2018) 2222–2231. https://doi.org/10.1039/C7DT03775A.
- [3] J. Cai, X. Wang, Y. Zhou, L. Jiang, C. Wang, Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe), Phys. Chem. Chem. Phys. 18 (2016) 10864–10867. https://doi.org/10.1039/C6CP00249H.
- [4] J. Li, Y. Wu, Z. Li, M. Zhu, F. Li, Characteristics of arsenate removal from water by metalorganic frameworks (MOFs), Water Sci. Technol. 70 (2014) 1391–1397. https://doi.org/10.2166/wst.2014.390.
- [5] W. Yu, M. Luo, Y. Yang, H. Wu, W. Huang, K. Zeng, F. Luo, Metal-organic framework (MOF) showing both ultrahigh As(V) and As(III) removal from aqueous solution, J. Solid State Chem. 269 (2019) 264–270. https://doi.org/10.1016/j.jssc.2018.09.042.
- [6] J. Sun, X. Zhang, A. Zhang, C. Liao, Preparation of Fe–Co based MOF-74 and its effective

adsorption of arsenic from aqueous solution, J. Environ. Sci. 80 (2019) 197-207. https://doi.org/10.1016/j.jes.2018.12.013.

- K. Folens, K. Leus, N.R. Nicomel, M. Meledina, S. Turner, G. Van Tendeloo, G. Du Laing, P. Van Der Voort, Fe₃O₄@MIL-101 – A Selective and Regenerable Adsorbent for the Removal of As Species from Water, Eur. J. Inorg. Chem. 2016 (2016) 4395–4401. https://doi.org/10.1002/ejic.201600160.
- [8] S. Su, R. Zhang, J. Rao, J. Yu, X. Jiang, S. Wang, X. Yang, Fabrication of lanthanummodified MOF-808 for phosphate and arsenic(V) removal from wastewater, J. Environ. Chem. Eng. 10 (2022) 108527. https://doi.org/10.1016/j.jece.2022.108527.
- [9] M.H. Hassan, R. Stanton, J. Secora, D.J. Trivedi, S. Andreescu, Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal–Organic Framework, ACS Appl. Mater. Interfaces. 12 (2020) 52788–52796. https://doi.org/10.1021/acsami.0c16477.
- [10] M. Li, Y. Liu, F. Li, C. Shen, Y.V. Kaneti, Y. Yamauchi, B. Yuliarto, B. Chen, C.-C. Wang, Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal, Environ. Sci. Technol. (2021) acs.est.1c01723. https://doi.org/10.1021/acs.est.1c01723.
- [11] H. Zhang, C. Huang, Z. Zhang, L. Xiang, S. Yue, Z. Shen, J. Li, Structure engineering of Zn-ZIF adsorbents for efficient and highly-selective phosphate removal from wastewater: Roles of surface mesopore and defect, Appl. Surf. Sci. 586 (2022) 152814. https://doi.org/10.1016/j.apsusc.2022.152814.
- [12] R. Liu, L. Chi, X. Wang, Y. Wang, Y. Sui, T. Xie, H. Arandiyan, Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs, Chem. Eng. J. 357 (2019) 159–168. https://doi.org/10.1016/j.cej.2018.09.122.
- [13] S. Li, T. Lei, F. Jiang, M. Liu, Y. Wang, S. Wang, X. Yang, Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe³⁺ for phosphorus removal from water, J. Colloid Interface Sci. 560 (2020) 321–329. https://doi.org/10.1016/j.jcis.2019.10.077.
- Z. Lin, J. Tang, X. Huang, J.P. Chen, Gadolinium(III) terephthalate metal-organic framework for rapid sequestration of phosphate in 10 min: Material development and adsorption study, Chemosphere. 292 (2022) 133498. https://doi.org/10.1016/j.chemosphere.2021.133498.
- [15] Z. Yang, T. Zhu, M. Xiong, A. Sun, Y. Xu, Y. Wu, W. Shu, Z. Xu, Tuning adsorption capacity of metal–organic frameworks with Al³⁺ for phosphorus removal: Kinetics, isotherm and regeneration, Inorg. Chem. Commun. 132 (2021) 108804. https://doi.org/10.1016/j.inoche.2021.108804.