Enhancement of Replacement Lithography by Combination of

Photocleavable Groups with Ultrashort Thiolates

Christian Fischer, Florian Born, Andreas Terfort*

Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany.

KEYWORDS ONB-group, UV-Irradiation, SAM Exchange, Infrared-Reflection Absorption

Spectroscopy.

Supporting Information

Table of contents

1.	Synthetic procedures for Compounds 1 to 10	
2.	¹ H and ¹³ C NMR Spectra of Compounds 1, 2, 3 and 9	
3.	Full IR Characterization of Compounds 1, 2 and 3	
4.	Wettability data	
5.	LED-Datasheet	
6.	References	S24

1. Experimental Procedures

1.1 Materials

All solvents and chemicals were purchased from commercial suppliers and used as received unless otherwise state. Ethyl acetate (99.5%), DCM (99.9%), diethylether (99.8), acetic acid (99.8%), ethanol (p.a. 99.8%), NaBH₄ (99%) and vanillin (reagentplus grade) were purchased from Sigma-Aldrich, THF (ACS reagent grade), acetonitrile (HPLC grade) and K₂S₂O₃ (GPR reactapur grade) from VWR, K₃Fe(CN)₆ (99%), Na₂SO₄ (99%) and 3,4-dihydroxy-benzaldehyde (98%) from Roth, thioglycolic acid (96%) from TCI, KOH (99.5%) from Bernd Kraft, K₄Fe(CN)₆ (extra pure grade) from Merck, NaHCO₃ (extra pure grade) and K₂CO₃ (extra pure grade) from Grüssing, DMF (99.5%) and HNO₃ (70%, reagent grade) from Fisher Scientific, DIAD (98%) from Carbolution and 1-bromohexane (99+%) from Acros. Hexane was received in technical grade and distilled prior to use in chromatography. Absolute (abs.) THF was obtained by heating THF over sodium metal in a nitrogen atmosphere with benzophenone as indicator and freshly distilled before use and kept under nitrogen over 3A molar sieve.

1.2 Synthesis of *O*-hexylvanillin 4^1

To solution of vanillin (10.00 g, 65.73 mmol) in DMF (50 mL) was added K_2CO_3 (14.53 g, 105.2 mmol) and 1-bromohexane (11.0 mL, 78.9 mmol) before heating at 60 °C for 72 h. The mixture was poured into ice water (100 mL), extracted with diethylether three times, before washing the combined organic layers with a saturated NaHCO₃ solution and brine. After drying over Na₂SO₄, the solvent was removed in vacuum and the obtained crystalline crude

product washed with a small amount of *n*-hexane. The product was isolated as colorless crystals in 74% yield (11.74 g, 48.64 mmol).

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 9.84$ (s, 1H, H-1), 7.40 – 7.45 (m, 2H, H-2, H-3) 6.96 (d, ³*J*_{*H-H*} = 7.5 Hz, 1H, H-4) 4.10 (t, ³*J*_{*H-H*} = 7.5 Hz, 2H, H-6), 3.93 (s, 3H, H-5), 1.88 (quin, ³*J*_{*H-H*} = 7.5 Hz, 2H, H-7), 1.40 – 1.54 (m, 2H, H-8), 1.30 – 1.39 (m, 4H, H-9 and H-10), 0.85 – 0.95 (m, 3H, H-11).

1.3 Synthesis of 3,4-Di(hexyloxy)benzaldehyde 5^2

Compound **5** was synthesized as described in literature², using 3,4-dihydroxybenzaldehyde (5.00 g, 74.2 mmol), K_2CO_3 (15.01 g, 108.6 mmol) and 1-bromohexane (11.1 mL, 79.6 mmol) at slightly higher temperatures of 80 °C for 24 hours. The product was obtained after washing with *n*-hexane as an off-white solid in 97% yield (10.76 g, 7.020 mmol).

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 9.83$ (s, 1H, H-1), 7.41 (m, 2H, H-2 and H-4), 6.95 (d, ³*J*_{*H-H*} = 7.5 Hz, 1H, H-3), 4.06 (q, ³*J*_{*H-H*} = 7.5 Hz, 4H, H-5 and H-11), 1.76 – 1.92 (m, 4H, H-6 and H-12), 1.42 – 1.54 (m, 4H, H-7 und H-13), 1.28 – 1.40 (m, 8H, H-8, H-9, H-14 and H-15), 0.85 – 0.96 (m, 6H, H-10 and H-16).

1.4 Synthesis of 4-Hexyloxy-5-methoxy-2-nitrobenzaldehyde 6

Compound **4** (11.47 g, 48.54 mmol) was dissolved in acetic acid (100 mL), 65% HNO₃ (17.0 mL, 244.0 mmol) was added, and the mixture heated for 24 h at 60 °C. After addition of water (50 mL) and extraction with DCM, the organic phase was washed with saturated NaHCO₃ solution and brine, before drying over Na₂SO₄. The solvent was removed in vacuum to yield a bright yellow solid (12.01 g, 75% purity, equivalent to 9.00 g of pure **6**, 32.0 mmol, 66%), which was used without further purification in the next reaction step. The impurity is the corresponding 4-hexyloxy-3-methoxybenzoic acid formed by oxidation under the reaction conditions.

¹**H-NMR** (250 MHz, CDCl₃): $\delta = 10.44$ (s, 1H, H-1), 7.59 (s, 1H, H-3), 7.41 (s, 1H, H-2), 4.15 (t, ${}^{3}J_{H-H} = 7.5$ Hz, 2H, H-5), 4.01 (s, 3H, H-4), 1.81 – 1.97 (m, 2H, H-6), 1.41 – 1.59 (m, 2H, H-7), 1.26 – 1.41 (m, 4H, H-8 and H-9), 0.84 – 0.98 (m, 3H, H-10); (compare ref.³).

1.5 Synthesis of 4,5-Di(hexyloxy)-2-nitrobenzaldehyde 7

Compound **7** was prepared similar to compound **6** from **5** (12.85 g, 41.93 mmol) and 65% HNO_3 (14.6 mL, 210 mmol) in acetic acid (120 mL). The crude product was obtained as a yellow solid (12.51 g, 80% purity, equivalent to 10.00 g of pure **7**, 28.5 mmol, 68%) and used without further purification. Like in chapter 1.4 the impurity is the oxidized species 3,4-Dihexyloxybenzoic acid.

¹**H-NMR** (300 MHz, CDCl₃): *δ* = 10.43 (s, 1H, H-1), 7.57 (s, 1H, H-3), 7.37 (s, 1H, H-2), 4.09 - 4.17 (m, 4H, H-4 and H-10), 1.79 – 1.94 (m, 4H, H-5 and H-11), 1.42 – 1.56 (m, 4H, H-6 and H-12), 1.27 – 1.42 (m, 8H, H-7, H-8, H-13 and H-14), 0.85 – 0.96 (m, 6H, H-9 and H-15).

1.6 Synthesis of 4-Hexyloxy-5-methoxy-2-nitrobenzylalcohol 8^3

The crude compound **6** (8.00 g, equivalent to 6.00 g of pure **6**, 21.33 mmol) was dissolved in abs. THF (200 mL), cooled to 0 °C in an ice bath, and treated with NaBH₄ (2.15 g, 56.9 mmol). After four hours the suspension was poured into water (200 mL) and extracted three times with EE, before drying the combined organic phase over Na₂SO₄ and removing the solvent. The crude product was recrystallized from *n*-hexane to yield a yellow solid in 85% (5.13 g, 18.2 mmol, 56% over both steps).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 7.70$ (s, 1H, H-5), 7.14 (s, 1H, H-8), 4.96 (d, ${}^{3}J_{H-H} = 5.7$ Hz, 2H, H-2), 4.07 (t, ${}^{3}J_{H-H} = 6.8$ Hz, 2H, H-9), 3.99 (s, 3H, H-15), 2.60 (t, ${}^{3}J_{H-H} = 6.5$ Hz, 1H, H-1) 1.87 (quin, ${}^{3}J_{H-H} = 6.9$ Hz, 2H, H-10), 1.43 – 1.52 (m, 2H, H-11), 1.31 – 1.39 (m, 4H, H-12 und H-13), 0.88 – 0.95 (m, 3H, H-14); (compare ref.³).

¹³**C-NMR** (126 MHz, CDCl₃): δ = 154.4 (C-7), 147.7 (C-6), 140.0 (C-4), 132.1 (C-3), 111.4 (C-8), 109.5 (C-5), 69.7 (C-9), 63.1 (C-2), 56.6 (C-15), 31.7 (C-12), 29.0 (C-10), 25.7 (C-11), 22.7 (C-13), 14.1 (C-14).

MS [m/z]:

1.7 Synthesis of 4,5-Di(hexyloxy)-2-nitrobenzylalcohol 9

Compound **9** was synthesized similarly to compound **8**, using **7** (8.00 g, equivalent to 6.40 g of pure **7**, 18.2 mmol) and NaBH₄ (1.75 g, 45.5 mmol) in abs. THF (180 mL), yielding an oily crude product, which was further purified by column chromatography (silica, *n*-hexane/EE gradient from 1:10 to 1:1). The resulting light-yellow solid was obtained in 82% yield (5.28 g, 15.0 mmol, mp. 62 °C, 56% over both steps).

¹**H-NMR** (500 MHz, CDCl₃): δ = 7.67 (s, 1H, H-5), 7.11 (s, 1H, H-8), 4.92 (s, 2H, H-2), 4.11 (t, ${}^{3}J_{H-H}$ = 6.3 Hz, 2H, H-15), 4.04 (t, ${}^{3}J_{H-H}$ = 6.6 Hz, 2H, H-9), 2.57 (s, 1H, OH), 1.84 (h, ${}^{3}J_{H-H}$ = 7.0 Hz, 4H, H-10, H-16), 1.53 – 1.43 (m, 4H, H-11, H-17), 1.39 – 1.29 (m, 8H, H-12, H-13, H-18, H-19), 0.90 (t, ${}^{3}J_{H-H}$ = 6.6 Hz, 6H, H-14, H-20).

¹³**C-NMR** (126 MHz, CDCl₃): δ = 154.3 (C-7), 147.9 (C-6), 139.7 (C-4), 132.2 (C-3), 112.4 (C-8), 110.0 (C-5), 69.7 (C-9, C-15), 63.1 (C-2), 31.6 (C-12, C-18), 29.0 (C-10,C-16), 25.7 (C-11, C-17), 22.7 (C-13, C-19), 14.1 (C-14, C-20).

MS [m/z]: calc.: 376.20 [M + Na]⁺, found: 376.08 [M + Na]⁺.

1.8 Synthesis of 4-Hexyloxy-3-methoxy-benzylalcohol 10

Compound 4 (3.00 g, 12.7 mmol) was reacted with NaBH₄ (0.96 g, 25.4 mmol) in abs. THF (100 mL). After work-up the crude product was further purified by column chromatography (silica, *n*-hexane/EE gradient from 1:10 to 3:2) to yield a colorless solid in 83% yield (2.50 g, 10.5 mmol).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 6.94 - 6.92$ (m, 1H, H-3), 6.89 - 6.83 (m, 2H, H-5, H-4), 4.62 (s, 2H, H-2), 4.01 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 2H, H-6), 3.88 (s, 3H, H-12), 1.89 - 1.78 (m, 2H, H-7), 1.51 - 1.40 (m, 2H, H-8), 1.42 - 1.28 (m, 4H, H.9, H-10), 0.90 (t, ${}^{3}J_{H-H} = 7.0$ Hz, 2H, H-11).

To PPh₃ (1.32 g, 5.01 mmol) dissolved in THF (12 mL) was slowly added DIAD (0.92 mL, 5.01 mmol) at 0 °C. After warming to room temperature, compound **8** (1.42 g, 5.01 mmol) and dithiodiglycolic acid (0.44 g, 2.39 mmol) were added, before heating to 70 °C for three hours. After addition of water, the mixture was extracted three times with EE (20 mL each), the combined organic phases dried over Na₂SO₄, and the solvent removed in vacuum. The crude product was purified by column chromatography (silica, DCM/EE gradient from 99:1 to 4:1) to yield a light yellow solid (0.95 g, 1.33 mmol, 56%, mp. 73 °C).

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.69 (s, 2H, H-6), 7.05 (s, 2H, H-9), 5.55 (s, 4H, H-3), 4.06 (t, ${}^{3}J_{H-H}$ = 6.8 Hz, 4H, H-10), 3.97 (s, 6H, H-16), 3.67 (s, 4H, H-1), 1.86 (p, ${}^{3}J_{H-H}$ = 6.9 Hz, 4H, H-11), 1.51 – 1.42 (m, 4H, H-12), 1.40 – 1.29 (m, 8H, H-13 and H-14), 0.90 (t, ${}^{3}J_{H-H}$ = 6.8 Hz, 6H, H-15).

¹³C-NMR (126 MHz, CDCl₃) δ = 168.6 (C-2), 154.0 (C-8), 148.0 (C-7), 139.8 (C-5), 126.0 (C-4), 110.6 (C-9), 109.3 (C-6), 69.6 (C-10), 64.3 (C-3), 56.6 (C-16), 41.2 (C-1), 31.5 (C-13), 28.8 (C-11), 25.6 (C-12), 22.6 (C-14), 14.0 (C-15).

MS [m/z]: calc.: 713.83 [M + H]⁺, found: 714.48 [M + D]⁺.

UV/Vis = 346 nm (6425 L/mol), 300 nm (4942 L/mol).

Compound 2 was obtained through the same protocol as compound 1, by reacting dithiodiglycolic acid (0.25 g. 1.35 mmol) with PPh₃ (0.74 g, 2.83 mmol), DIAD (0.52 mL, 2.83 mmol) and compound 9 (1.00 g, 2.83 mmol) in THF (14 mL). The obtained crude product was further purified by column chromatography (silica, DCM/EE 99:1), to yield a light-yellow solid in 53% (0.61 g, 0.72 mmol, mp. 106 °C) as the final product.

¹**H-NMR** (500 MHz, CDCl₃) δ = 7.69 (s, 2H, H-6), 7.02 (s, 2H, H-9), 5.55 (s, 4H, H-3), 4.10 (t, ${}^{3}J_{H-H}$ = 6.5 Hz, 4H, H-16), 4.04 (t, ${}^{3}J_{H-H}$ = 6.6 Hz, 4H, H-10), 3.67 (s, 4H, H-1), 1.84 (p, ${}^{3}J_{H-H}$ = 6.8 Hz, 8H, H-11, H-17), 1.53 – 1.43 (m, 8H, H-12, H-18), 1.40 – 1.27 (m, 16H, H-13, H-14, H-19, H-20), 0.97 – 0.85 (m, 12H, H-15, H-21).

¹³**C-NMR** (126 MHz, CDCl₃): δ = 168.6 (C-2), 153.9 (C-8), 148.3 (C-7), 139.6 (C-5), 126.0 (C-4), 111.7 (C-9), 109.8 (C-6), 69.6 (C-10, C-16), 64.4 (C-3), 41.3 (C-1), 31.5 (C-13, C-19), 28.9 (C-11, C-17), 25.7 (C-12, C-18), 22.6 (C-14, C-20), 14.0 (C-15, C-21).

MS [m/z]: calc.: 854.10 $[M + H]^+$, found: 854.92 $[M + D]^+$.

Similar to compound **1** (1.9), dithiodiglycolic acid (0.73 g. 4.0 mmol) was reacted with PPh₃ (2.22 g, 8.46 mmol), DIAD (1.7 mL, 8.5 mmol) and compound **10** (2.00 g, 8.46 mmol) in THF (35 mL). After aqueous work-up, the crude product was further purified by column chromatography (silica, *n*-hexane/EE gradient from 10:1 to 3:2) to give the final product as an off-white solid in 53% yield (1.27 g, 2.04 mmol).

¹**H-NMR** (500 MHz, CDCl₃): $\delta = 6.94 - 6.87$ (m, 4H, H-9, H-5), 6.86 - 6.80 (m, 2H, H-6), 5.09 (s, 4H, H-3), 3.99 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 4H, H-19), 3.86 (s, 6H, H-16), 3.56 (s, 4H, H-1), 1.82 (p, ${}^{3}J_{H-H} = 7.0$ Hz, 4H, H-11), 1.44 (p, ${}^{3}J_{H-H} = 7.2$ Hz, 4H, H-12), 1.36 – 1.29 (m, 8H, H-13, H-14), 0.89 (t, ${}^{3}J_{H-H} = 6.6$ Hz, 6H, H-15).

¹³**C-NMR** (126 MHz, CDCl₃): *δ* = 169.3 (C-2), 149.5 (C-8), 149.0 (C-7), 127.7 (C-4), 121.6 (C-5), 112.7 (C-6), 112.4 (C-9), 69.2 (C-10), 67.6 (C-3), 56.1 (C-16), 41.5 (C-1), 31.7 (C-13), 29.2 (C-11), 25.7 (C-12), 22.7 (C-14), 14.1 (C-15).

MS [m/z]: calc.: 623.21 $[M + H]^+$, found: 645.10 $[M + Na]^+$.

UV/Vis = 280 nm (3933 L/mol).

2. NMR Data

Figure S2: ¹³C-NMR of 4-Hexyloxy-5-methoxy-2-nitrobenzylalcohol 8 in CDCl₃.

Figure S3: ¹H-NMR of 4,5-Di(hexyloxy)-2-nitrobenzylalcohol 9 in CDCl₃.

Figure S4: ¹³C-NMR of 4,5-Di(hexyloxy)-2-nitrobenzylalcohol 9 in CDCl₃.

Figure S5: ¹H-NMR of 4-Hexyloxy-3-methoxybenzylalcohol **10** in CDCl₃.

Figure S6: ¹H-NMR of Bis-(4-hexyloxy-3-methoxy-2-nitrobenzyl)-dithioglycolate 1 in CDCl₃.

Figure S7: ¹³C-NMR of Bis-(4-hexyloxy-3-methoxy-2-nitrobenzyl)-dithioglycolate **1** in CDCl₃.

Figure S8: ¹H-NMR of Bis-(4,5-di(hexyloxy)-2-nitrobenzyl)-dithioglycolate 2 in CDCl₃.

Figure S9: ¹³C-NMR of Bis-(4,5-di(hexyloxy)-2-nitrobenzyl)-dithioglycolate 2 in CDCl₃.

Figure S10: ¹H-NMR of Bis-(4-hexyloxy-3-methoxy-benzyl)-dithioglycolate 3 in CDCl₃.

Figure S11: ¹³C-NMR of Bis-(4-hexyloxy-3-methoxy-benzyl)-dithioglycolate 3 in CDCl₃.

3. IR Data

Figure S12: Full IR comparison for ONB-HM. ATR spectrum measured of disulfide 1.

Table S1: IR band assignment of ONB-HM from DFT calculation of their vibrational modes and orientation of the transition dipole moments (TDM) according to the axis given in Figure X of the paper. **v** stretching vibration, Δ in-plane deformation vibration, γ wagging vibration, ω aromatic out-of-plane vibration, ρ rocking vibration and τ twisting vibration.

No	Mode	IRRAS	ATR	DFT	TDM	waakanina
INO.	Mode				I DIVI	weakening
1	$v_{CH_2,as.}$	2935	2929	3014	-	-
2	v _{co}	1736	1735	1788	⊥- axis A	Y
3	$v_{CC,arom.} + \Delta_{CH}$	1614	1612	1626	/	-
4	v_{as, NO_2} anti-phase	1581	1575	1573	- axis A	Y
5	$v_{cc,arom.} + v_{as,NO_2}$	1528	1519	1551	∥ - axis B	-
6	$v_{CC,arom.} + \Delta_{CH}$	-	1496	1505	∥ - axis B	Y
7	\mathcal{V}_{s, NO_2}	1335	1324	1331	⊥- axis B	Y
8	$v_{co,arom.} + v_{co,carboxy}$	1285	1279	1282	⊥- axis B	Y
9	γ_{CH_2} (glycolate)	-	1226	1261	⊥- axis B	extinguished
10	$v_{co, arom.}$ anti-phase	1220	1217	1224	between axis A and B	-
11	$\Delta_{CH, arom.}$	1185	1181	1196	∥ - axis B	Y
12	$\gamma_{CH_2} + \rho_{CH_3}$	1138	1134	1135	∥ - axis B	Y
13	γcn, arom.	1070	1064	1068	⊥- axis B	Y
14	ω _{CH, arom.}	-	877	884	out-of-plane	extinguished

Figure S13: Full IR comparison for ONB-HH. ATR spectrum measured of disulfide 2.

Figure S14: Surface configuration of the ONB-HH molecules in the SAM as depicted by the IR analysis. The shown axis A, along the center of the aromatic ring, and B through the benzyl-CH₂-group and hexoxy-oxygen, serve as an orientation for the TDMs shown in the IR analysis.

Table S2: IR band assignment of ONB-HH from DFT calculation of their vibrational modes and orientation of the transition dipole moments (TDM) according to the axis given in Figure S14. **v** stretching vibration, Δ in-plane deformation vibration, γ wagging vibration, ω aromatic out-of-plane vibration, ρ rocking vibration and τ twisting vibration.

No.	Mode	IRRAS [cm ⁻¹]	ATR [cm ⁻¹]	DFT [cm ⁻¹]	TDM	weakening
1	$v_{CH_2,as.}$	2933	2929	3014	-	-
2	v _{co}	1733	1734	1788	⊥- axis A	Y
3	$v_{CC,arom.} + \Delta_{CH}$	1612	1614	1625	⊥- axis B	Y
4	v_{as, NO_2} anti-phase	1579	1575	1573	- axis A	Y
5	$v_{CC, arom.} + v_{as, NO_2}$	1527	1519	1549	- axis B	-
6	$v_{CC,arom.} + \Delta_{CH}$	1506	1500	1504	⊥- axis A	Y
7	v_{s, NO_2}	1336	1327	1332	⊥- axis B	Y
8	$v_{co,arom.} + v_{co,carboxy}$	1284	1275	1281	⊥- axis A	Y
9	$v_{co, arom.}$ anti-phase	1216	1215	1220	- axis A	Y
10	${\cal V}$ CO, arom.	1176	1174	1193	⊥- axis B	Y
11	γ_{CH_2}	1147	1144	1152	- axis B	-
12	$\tau_{CH_2} + \rho_{CH_3}$	1135	1126	1134	- axis B	Y
13	γ _{CN} , arom.	-	1062	1064	⊥- axis B	extinguished
14	ω _{CH,arom.}	-	870	884	out-of-plane	extinguished

Figure S15: Full IR comparison for B-MH. ATR spectrum measured of disulfide 3.

Figure S16: Surface configuration of the B-MH molecules in the SAM as depicted by the IR analysis. The shown axis A, along the center of the aromatic ring, and B through the benzyl-CH₂-group and hexoxy-oxygen, serve as an orientation for the TDMs shown in the IR analysis.

Table S3: IR band assignment of B-MH from DFT calculation of their vibrational modes and orientation of the transition dipole moments (TDM) according to the axis given in Figure S16. **v** stretching vibration, Δ in-plane deformation vibration, γ wagging vibration, ω aromatic outof-plane vibration, ρ rocking vibration and τ twisting vibration.

		IRRAS	ATR	DFT		
No.	Mode	$[cm^{-1}]$	[cm ⁻¹]	[cm ⁻¹]	TDM	weakening
1	$v_{CH_2,as.}$	2933	2929	3014	-	-
2	v _{co}	1729	1737	1775	⊥- axis A	Y
3	$v_{CC,arom.} + \Delta_{CH}$	1594	1593	1581	∥- axis B	Y
4	$v_{CC,arom.} + \Delta_{CH}$	1519	1517	1507	∥- axis A	Y
5	$v_{CO, arom.}$ in-phase $+\Delta_{CH}$	1467	1467	1448	∥ - axis B	Y
6	$v_{CC,arom.} + \Delta_{CH}$	1382	1380	1380	∥ - axis A	-
7	γ_{CH_2}	1334	1332	1347	between axis A and B	-
8	$v_{co,arom.} + v_{co,carboxy}$	1274	1265	1268	⊥- axis A	Y
9	$v_{co, arom.}$ anti-phase	1240	1238	1250	∥ - axis A	Y
10	au _{CH2}	1193	1198	1218	⊥- axis B	extinguished
11	$\gamma_{CH_2} + \rho_{CH_3}$	1166	1137	1153	⊥- axis A	Y
12	$ ho_{CH_2}$	1143	1122	1138	∥ - axis B	Y
13	Δ_{CH_2}	1031	1027	1034	∥ - axis B	Y
14	au _{CH2}	-	849	872	⊥- surface normal	extinguished
15	ω _{CH, arom.}	-	802	792	out-of-plane	extinguished

4. Wettability images

Figure S17: WCA images of the three tested SAMs ONB-HM, ONB-HH and B-MH and C12-D as reference, together with the measured WCAs.

5. LED-Datasheet

Item Type	LED Bulb	
LED Chip Brand	2 x Epiled 45mil Chip	
LED Chip Model	2 x 3W High Power	
Base Type	2 Pins	
Diameter Bulb	5mm	
Diameter Package	8mm	
Viewing Angle	140°	
Dominant Wavelength	365-370nm	
Emitting Color	UV	
Luminous Intensity(max)	17.589 lm	
DC Forward Voltage	3.4V-3.8V	
DC Forward Current	1400mA	
Max. Power Dissipation	5320mW	
Max. Reverse Voltage	5V	

Table S4: Data sheet of the used 5W High Power 365nm LED.

8. REFERENCE

- Rocha-Ortiz, J. S.; Insuasty, A.; Insuasty, B.; Ortiz, A. Evaluating the Intramolecular Charge Transfer in Novel Meso-Alkoxyphenyl and β-Ethynylphenolic BODIPY Derivatives. *J. Mol. Struct.* 2020, *1206*, 127774. https://doi.org/10.1016/j.molstruc.2020.127774.
- (2) Zhang, Q.; Peng, H.; Zhang, G.; Lu, Q.; Chang, J.; Dong, Y.; Shi, X.; Wei, J. Facile Bottom-Up Synthesis of Coronene-Based 3-Fold Symmetrical and Highly Substituted Nanographenes from Simple Aromatics. *J. Am. Chem. Soc.* **2014**, *136* (13), 5057–5064. https://doi.org/10.1021/ja413018f.
- (3) Füser, Matthias. Dissertation: Darstellung Funktionalisierter SAM-Präkursoren Und MOF-Linker Für Den Aufbau von Strukturierten Organischen Dünnschichtsystemen, Goethe Universität Frankfurt am Main, Frankfurt am Main, 2018.