Electronic Supplementary Material (ESI) for RSC Applied Polymers. This journal is © The Royal Society of Chemistry 2023

Supporting Information For:

Polypentenamer thermoplastic elastomers via copolymerization of cyclopentene and dicyclopentadiene

Daniel W. Weller ^a, Robert Halbach ^b, Alexander V. Zabula ^b, Sarah J. Mattler, ^b Xiaodan Gu ^{a*}, Carlos R. López-Barrón ^{b*}

^a School of Polymer Science and Engineering, The University of Southern Mississippi,
Hattiesburg, Mississippi 39406, United States

^b ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520, United States

*Corresponding Authors: Email: xiaodangu@usm.edu, carlos.r.lopez-barron@exxonmobil.com

Keywords: polypentenamer, cyclopentene, dicyclopentadiene, copolymer, thermoplastic elastomer

Figure S1: GPC data for the calculation of branching index (top) and molecular weight density (bottom) versus molecular weight (M) for polymers of varying DCPD content.

Figure S2: DMTA data showing storage and loss modulus at a heating ramp of 2 °C/min after fast quenching (60 °C/min). Figure (a)~(e) represent the samples with DCPD mol% from 0,0.6,3.3,6.6 and 21.3% respectively.

0% DCPD (-40 C) 28.4% crystallinity

Figure S3: Example of Igor curve fitting software. (Top) Peak fitting results. Raw data neatly described as the combination of 1 amorphous peak (peak 0) and 4 crystalline peaks (peaks 1-4). (bottom) Peak descriptions used to calculate % crystallinity using following equation.

% Crystallinity =
$$100 \times \frac{\sum Peak \ areas \ 1,2,3,4}{\sum Peak \ area \ 0,1,2,3,4}$$

Figure S4: WAXS 2D images. Circular integration for 1D plots performed on the top half of data between 0 and 180 degrees to avoid the shadowing effect that reduced scattering intensity towards the bottom of the detector.

Figure S5: WAXS 1D Waterfall Plots for the polypentenamer with different DCPD content.

Figure S6: Kratkey plots of polypentenamer containing 0% DCPD at various temperatures.

Figure S7: Kratkey plots of polypentenamer containing 0.6% DCPD at various temperatures.

Figure S8: Kratkey plots of polypentenamer containing 3.3% DCPD at various temperatures.

Figure S9: Kratkey plots of polypentenamer containing 6.6% DCPD at various temperatures.

Figure S10: Kratkey plots of polypentenamer containing 21.3% DCPD at various temperatures.

Figure S11: ¹H NMR spectra for polypentenamer samples containing DCPD (in CDCl₃, 25 °C).

Figure S12: ¹³*C NMR spectra for polypentenamer samples containing DCPD (in CDCl₃, 25 °C).*

Figure S13: ¹³C NMR spectra for polypentenamer homopolymer (in CDCl₃, 25 °C).