Materials Advances

RSCPublishing

PAPER

High birefringence liquid crystals with wide temperature range and low melting point for augmented reality displays

Ran Chen^a, Liang Zhao^a, Yannanqi Li^b, Jian Li^c, Pei Chen^a, Xinbing Chen^a, *, Zhongwei An^{a, c,*}

^a Key Laboratory of Applied Surface and Colloid Chemistry (MOE), International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology,

School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.

^c Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.

* Corresponding E-mail: <u>chenxinbing@snnu.edu.cn</u> (X. Chen); <u>gmecazw@163.com (Z</u>. An).

Electronic supplementary information

Table of contents

1.	Synthesis process	S2
2.	Characterization spectra of target compounds	S 6
3.	Tables S1-S4, Figures S5 and S6	S10
4.	Compositions of mixtures SNUP03 and SNUP04	S12
5.	Geometric data	S13

^b College of Optics and Photonics, University of Central Florida, Orlando, FL, USA.

1. Synthesis process

The final products *n***TFV**, **4TV**, **4FTV** and **4FTFV** were synthesized by four-step reactions in turn, as shown in **Scheme 1.** Herein, as an example, synthesis procedure of **2TFV** is shown below.

1.1 Synthesis of 4-(4-(2-(trans-4-ethylcyclohexyl)ethyl)phenyl)-2-methylbut-3-yn-2-ol (20T)

Under nitrogen protection, 2-methyl-3-butyn-2-ol (0.56 g, 6.7 mmol), 4-(2-(*trans*-4-ethylcyclohexyl)ethyl)iodobenzene (2 g, 5.60 mmol), CuI (0.02 g, 0.11 mmol) and PPh₃ (0.07 g, 0.28 mmol), triethylamine (50 mL) were added to a three-necked flask. After stirring at 60 °C for 30 min, Pd(PPh₃)₄ (0.13 g, 0.11 mmol) was added into the mixture. Then, the solution was heated at 80 °C and stirred for 8 h. The mixture was then cooled and filtered, and DCM was added and the organic layer was washed with saturated ammonium chloride solution, dried over anhydrous MgSO₄ and the solvents were evaporated. The crude product was purified through recrystallization from PE to give a pale yellow solid, yield 65% with HPLC purity of 98%. ¹H NMR (CDCl₃, 300 MHz, TMS) δ (ppm): 7.31 (d, *J*= 8.1 Hz, 2H), 7.08 (d, *J*= 8.0 Hz, 2H), 2.63-2.51 (m, 2H), 1.80-1.70 (m, 4H), 1.60 (s, 6H), 1.50-1.43 (m, 2H), 1.27-1.11 (m, 4H), 0.93-0.81 (m, 7H). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ (ppm): 143.62, 131.59, 128.29, 119.87, 93.22, 82.31, 65.61, 39.61, 39.04, 37.47, 33.28, 32.82, 31.57, 30.02, 11.52. IR (KBr, pellet, cm⁻¹): 3315, 2983, 2920, 2857, 2231, 1914, 1615, 1520, 1457, 1378, 1283, 1164, 967, 822. EI-MS m/z (rel. int.): 298(M⁺, 9), 283(100), 155(28), 115(11), 55(8).

1.2 Synthesis of 2-(4-((4-(2-(*trans*-4-ethylcyclohexyl)ethyl)phenyl)ethynyl)-3-fluorophenethyl)-1,3-dioxolane (201T)

Under nitrogen protection, a mixture of **20T** (1.91 g, 6.40 mmol), KOH (2.91 g, 52 mmol) and TBAB (0.19 g, 0.60 mmol) in 50 mL of PhMe/H₂O at a ratio of 4:1 (V/V) was stirred at 60 °C for 30 min. Then the aryl halide **1SQ** (1.60 g, 5.80 mmol) and Pd(PPh₃)₄ (0.23 g, 0.20 mmol) were added and the stirred mixture was heated at 80 °C for 8 h. After the mixture was cooled to room temperature, the solution was filtered over a pad of silica gel. Then the mixture was diluted with water and extracted with ethyl acetate for three times. The combined organic phase was dried over MgSO₄. After removal of the solvent in *vacuo*, the residue was first purified *via* column chromatography on silica gel using PE/EA (20/1) as eluent, then it was purified through recrystallization from PE/EA (5/1) to give a white crystal, yield 48% with HPLC purity of 99%. ¹H NMR (CDCl₃, 300 MHz, TMS) δ (ppm): 7.33 (dd, *J* = 17.7, 7.8 Hz, 3H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 4.86-4.71 (m, 1H), 3.99-3.62 (m, 4H), 2.78-2.42 (m, 4H), 1.99-1.80 (m, 2H), 1.77-1.53 (m, 4H), 1.48-1.29 (m, 2H), 1.21-0.95 (m, 4H), 0.89-0.67 (m, 7H). ¹³C NMR (CDCl₃, 75 MHz, TMS) δ (ppm): 164.44, 160.52, 144.54, 143.96, 133.21, 131.60, 128.41, 124.06, 120.16, 115.56, 109.66, 103.50, 94.36, 82.18, 65.01, 39.61, 39.07, 37.49, 34.95, 33.36, 33.23, 32.83, 30.04, 29.86, 11.55. EI-MS *m/z* (rel. int.): 434(M⁺, 26), 372(15), 309(18), 207(100), 100(73), 73(78). IR (KBr, pellet, cm⁻¹): 2955, 2912, 2848, 2205, 1907, 1605, 1515, 1438, 1217, 1130, 1038, 886, 812.

1.3 Synthesis of 3-(4-((4-(2-(trans-4-ethylcyclohexyl)ethyl)phenyl)ethynyl)-3-fluorophenyl)propanal (201TQ)

Under nitrogen protection, the coupled products **201T** (0.86 g, 2 mmol), formic acid (18.4 g, 0.40 mol) and THF (50 mL) were mixed and stirred at 55 °C for 5 h. After cooling the mixture to room temperature, the mixture was diluted with water and extracted three times with ethyl acetate. The combined organic layers were dried over MgSO₄. After removal of the solvent in *vacuo*, the residue was purified through recrystallization from EA to give a pale yellow solid, yield 80% with HPLC purity of 98%. ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 9.81 (s, 1H), 7.45-7.39 (m, 3H), 7.17-7.14 (m, 2H), 6.96-6.92 (m, 2H), 2.96-2.93 (t, *J* = 7.8 Hz, 2H), 2.81-2.77 (t, *J* = 7.8 Hz, 2H), 2.64-2.59 (m, 2H), 1.80-1.72 (m, 4H), 1.50-1.47 (m, 2H), 1.20-1.17 (m, 4H), 0.90-0.84 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 200.83, 163.86, 144.18, 143.16, 133.49, 131.68, 128.52, 128.50, 124.09, 120.04, 115.60, 115.39, 110.18, 94.48, 91.98, 44.81, 39.66, 39.16, 37.52, 33.44, 33.28, 32.88, 30.11, 30.11, 27.81, 11.66. EI-MS *m/z* (rel. int.): 390 (M⁺, 50), 265 (100), 244 (30), 222 (54), 111 (6). IR (KBr, pellet, cm⁻¹): 3088, 2915, 2848, 2725, 2238, 1725, 1448, 1120, 829.

1.4 Synthesis of 4-(3-butylene)-1-((4-(2-(trans-4-ethylcyclohexyl)ethyl)phenyl)ethynyl)-2-fluorobenzene (2TFV)

Under nitrogen protection, a mixture of methyltriphenylphosphonium bromide (0.50 g, 1.40 mmol) and *t*-BuOK (0.17 g, 1.50 mmol) in THF (50 mL) was cooled to -15 °C and stirred for 30 min. To the mixture, **201TQ** (0.50 g, 1.20 mmol) in THF (5 mL) was added. The resulting solution was stirred for 2 h and allowed to warm to room temperature naturally. The mixture was diluted with water and extracted three times with PE. The combined organic layers were dried over MgSO₄. After removal of the solvent *in vacuo*, the residue was first purified *via* column chromatography on silica gel using PE as eluent, then it was purified through recrystallization from ethanol to give purity above 99% for HPLC measurement. (Yield: 58%). ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.47-7.44 (m, 3H), 7.19-7.14 (m, 4H), 5.86-5.58 (m, 1H), 5.05-4.97 (m, 2H), 2.72-2.68 (t, *J* = 7.60 Hz, 2H), 2.64-2.59 (t, *J* = 7.60 Hz, 2H), 2.38-2.35 (m, 2H), 1.95-1.73 (m, 4H), 1.63-1.47 (m, 2H), 1.24-1.15 (m, 4H), 0.96-0.82 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.82, 161.33, 144.70, 144.06, 137.41, 133.17, 131.67, 128.50, 124.24, 124.21, 120.18, 115.61, 115.43, 109.54, 94.18, 82.25, 39.66, 39.18, 37.52, 35.18, 35.04, 33.44, 33.88, 32.88, 32.28, 32.28, 30.12, 11.67. EI-MS *m/z* (rel. int.): 388 (M⁺, 45), 347 (100), 263 (25), 222 (97), 111 (14), 55 (58). IR (KBr, pellet, cm⁻¹): 3088, 2915, 2848, 2238, 1635, 1516, 1448, 1120, 943, 829.

The other target compounds were prepared by using above similar procedures, their structure data are listed below.

3TFV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.51-7.39 (m, 3H), 7.17-7.11 (m, 2H), 6.95-6.92 (m, 2H), 5.86-5.78 (m, 1H), 5.05-4.99 (m, 2H), 2.75-2.69 (t, *J* = 7.60 Hz, 2H), 2.65-2.61 (t, *J* = 7.40 Hz, 2H), 2.40-2.33 (m, 2H), 1.80-1.73 (m, 4H), 1.51-1.47 (m, 2H), 1.35-1.27 (m, 2H), 1.21-1.12 (m, 4H), 0.95-0.82 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.85, 161.35, 144.70, 144.04, 137.40, 133.17, 131.68, 128.49, 124.23, 124.20, 120.24, 115.64, 115.61, 109.61, 94.19, 82.29, 39.89, 39.19, 37.63, 37.56, 35.19, 35.02, 33.45, 33.32, 33.30,

33.30, 20.16, 14.55. EI-MS m/z (rel. int.): 402 (M⁺, 35), 361 (100), 263 (27), 222 (92), 111 (8), 55 (41). IR (KBr, pellet, cm⁻¹): 3087, 2913, 2849, 2235, 1638, 1516, 1448, 1121, 949, 829.

4TFV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.46-7.38 (m, 3H), 7.20-7.12 (m, 2H), 6.98-6.91 (m, 2H), 5.87-5.77 (m, 1H), 5.06-4.98 (m, 2H), 2.73-2.69 (t, *J* = 7.60 Hz, 2H), 2.64-2.60 (t, *J* = 7.40 Hz, 2H), 2.39-2.34 (m, 2H), 1.76-1.72 (m, 4H), 1.54-1.46 (m, 2H), 1.27-1.16 (m, 8H), 0.97-0.81 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.84, 161.34, 144.76, 144.03, 137.40, 133.17, 131.67, 128.49, 124.19, 120.21, 115.63, 115.60, 115.42, 109.59, 94.16, 82.27, 39.18, 37.89, 37.55, 37.27, 35.20, 35.18, 35.02, 33.44, 33.34, 33.33, 33.33, 29.36, 23.15, 14.28. EI-MS m/z (rel. int.): 416 (M⁺, 40), 375 (100), 263 (15), 222 (25), 55 (3). IR (KBr, pellet, cm⁻¹): 3090, 2923, 2839, 2225, 1635, 1513, 1418, 1111, 949, 810.

5TFV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.49-7.39 (m, 3H), 7.19-7.14 (m, 2H), 6.94-6.90 (m, 2H), 5.85-5.78 (m, 1H), 5.05-4.97 (m, 2H), 2.72-2.68 (t, *J* = 7.60 Hz, 2H), 2.68-2.59 (t, *J* = 7.40 Hz, 2H), 2.39-2.33 (m, 2H), 1.78-1.71 (m, 4H), 1.51-1.45 (m, 2H), 1.28-1.14 (m, 10H), 0.96-0.85 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.82, 161.32, 144.76, 144.05, 137.40, 133.45, 131.69, 128.53, 124.22, 120.18, 115.63, 115.60, 115.42, 109.55, 94.10, 82.24, 39.17, 37.89, 37.52, 35.18, 35.17, 35.03, 33.43, 33.43, 33.43, 33.34, 33.33, 33.32, 26.76, 22.82, 14.24. EI-MS m/z (rel. int.): 430 (M⁺, 40), 391 (100), 263 (15), 222 (25), 55 (3). IR (KBr, pellet, cm⁻¹): 3080, 2933, 2839, 2235, 1645, 1503, 1408, 1101, 940, 815.

4FTV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.48-7.37 (m, 3H), 7.21-7.16 (m, 2H), 6.93-6.90 (m, 2H), 5.87-5.81 (m, 1H), 5.06-4.94 (m, 2H), 2.74-2.60 (t, *J* = 7.60 Hz, 2H), 2.63-2.59 (t, *J* = 7.40 Hz, 2H), 2.40-2.34 (m, 2H), 1.79-1.73 (m, 4H), 1.52-1.46 (m, 2H), 1.27-1.16 (m, 8H), 0.97-0.84 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.89, 161.39, 146.28, 142.52, 137.82, 133.12, 131.69, 128.59, 124.13, 124.10, 120.63, 115.49, 115.30, 109.17, 93.79, 82.54, 38.84, 37.87, 37.49, 37.25, 35.41, 35.41, 35.36, 33.29, 33.29, 33.29, 33.29, 29.36, 23.15, 14.29. EI-MS m/z (rel. int.): 416 (M⁺, 28), 375 (100), 263 (5), 222 (20), 55 (3). IR (KBr, pellet, cm⁻¹): 3079, 2919, 2829, 2245, 1645, 1570, 1410, 1110, 949, 829.

4FTFV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.44-7.39 (m, 7H), 6.95-6.90 (m, 4H), 5.86-5.76 (m, 1H), 5.06-4.98 (m, 2H), 2.73-2.69 (t, J = 7.60 Hz, 2H), 2.64-2.60 (t, J = 7.40 Hz, 2H), 2.39-2.35 (m, 2H), 1.78-1.72 (m, 4H), 1.49-1.47 (m, 2H), 1.28-1.15 (m, 8H), 0.94-0.87 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 163.84, 161.39, 146.79, 145.20, 137.35, 133.26, 133.17, 124.29, 124.13, 115.66, 115.51, 115.30, 109.25, 108.66, 87.50, 87.46, 38.81, 37.86, 37.48, 37.25, 35.21, 35.20, 35.00, 33.70, 33.29, 33.28, 32.93, 29.35, 23.14, 14.28. EI-MS m/z (rel. int.): 434 (M⁺, 55), 393 (100), 280 (10), 242 (15), 55 (3). IR (KBr, pellet, cm⁻¹): 3089, 2929, 2826, 2226, 1635, 1570, 1410, 1110, 949, 829.

4TV: ¹H NMR (CDCl₃, 400 MHz, TMS) δ (ppm): 7.49-7.44 (m, 4H), 7.19-7.15 (m, 4H), 5.91-5.85 (m, 1H), 5.10-4.99 (m, 2H), 2.74-2.70 (t, *J* = 7.60 Hz, 2H), 2.64-2.60 (t, *J* = 7.60 Hz, 2H), 2.38-2.36 (m, 2H), 1.80-1.75 (m, 4H), 1.5-1.48 (m, 2H), 1.29-1.15 (m, 8H), 0.91-0.83 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ (ppm): 143.68, 142.16, 137.87, 131.60, 131.60, 131.57, 131.57, 128.58, 128.58, 128.48, 128.48, 120.98, 120.56, 115.28, 89.91, 88.18, 39.20, 39.20, 37.90, 37.55, 37.28, 35.39, 35.38, 33.37, 33.37, 33.35, 33.35, 29.37, 23.15, 14.30. EI-MS m/z

S4

(rel. int.): 398 (M⁺, 25), 357 (100), 245 (5), 204 (30). IR (KBr, pellet, cm⁻¹): 3089, 2914, 2849, 2228, 1630, 1516, 1448, 911, 829.

2. Characterization spectra of target compounds

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectra of 4FTV recorded in CDCl₃.

Fig. S3 ¹H (top) and ¹³C (bottom) NMR spectra of 4TFV recorded in CDCl₃.

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectra of 4FTFV recorded in CDCl₃.

3. Tables S1-S4, Figures S5 and S6

C	ompd.	Phase transition (°C)	$\Delta H_{\text{C-N}} (\text{kJ/mol})$	$\Delta H_{\text{N-I}}$ (kJ/mol)	Nematic range (°C)
2	2TFV	Cr 33.9 N 127.4 I	12.4	1.0	93.5
3	BTFV	Cr 51.0 N 151.1 I	5.4	0.6	100.1
4	TFV	Cr 42.0 N 149.5 I	12.0	0.9	107.5
5	STFV	Cr 50.5 N 141.4 I	5.3	0.6	90.9
4	FTV	Cr 45.4 N 137.1 I	21.1	0.6	91.7
4]	FTFV	Cr 30.5 N 140.7 I	13.4	0.8	110.2
	4TV	Cr 100.2 N 161.1 I	4.6	1.8	60.9
	4FT4	Cr 50.4 Sm 71.8 N	15.0		75.2
4	+614	147.1 I	15.0	-	/5.5
1	EDV	Cr 41.8 SmA 71.5 N	2.2	2.1	12.6
4	F D V	115.1 I	5.2	2.1	45.0
4	BFV	Cr 23.8 N 109.5 I	3.9	2.2	85.7
2	BFV	Cr 15.8 N 88.0 I	19.5	1.0	72.2
3	BFV	Cr 30.3 N 115.1 I	13.2	1.3	84.8
5	SBFV	Cr 38.9 N 118.9 I	2.9	2.3	80.0

Table S1. Phase transitions temperatures and corresponding enthalpies for the compounds *n***TFV**, **4TV**, **4FTV** and **4FTFV**.^a

^a Cr: crystal; N: nematic mesophase phase; I: isotropic liquid.

Table S2. The effect of compound 2TFV on the properties of LC mixture P02-F.

LC mixture	Phase transition (°C)	Nematic range (°C)	Δn	γ_1 (mPa·s)
P02-F	Cr -18.2 N 123.3 I	141.5	0.2908	221.1
F	Cr -34.1 N 123.3 I	157.4	0.2825	185.5

Table S3. Selected nine phase levels between 0 and 2π , and the corresponding operation voltage of SNUP04.

Phase level	1	2	3	4	5	6	7	8	9
Voltage (V)	0	1.52	1.76	1.97	2.22	2.58	3.02	3.63	5
Phase change (π)	0	0.2595	0.5190	0.7785	1.0380	1.2975	1.5570	1.8165	2.0760

Table S4. Measured PTP response time of **SNUP04** in a transmissive cell with $d=3.12 \ \mu\text{m}$. For a 1.56 μm reflective LCoS panel, the response time should be 4x faster than the data shown here.

					Rise t	ime (ms)				
		1	2	3	4	5	6	7	8	9
	1	*	51.08	36.29	23.92	18.18	12.05	8.72	5.45	2.53
ms	2	14.37	*	24.54	20.11	14.35	9.83	7.33	4.69	2.14
e (]	3	13.79	29.84	*	17.35	12.59	8.89	6.65	4.26	1.95
in I	4	12.85	21.18	18.75	*	11.62	8.31	6.19	3.96	1.83
y t	5	12.45	19.44	17.37	15.03	*	7.40	4.72	3.71	1.67
eca	6	12.31	18.37	16.94	14.43	10.39	*	3.86	3.35	1.55
ă	7	12.24	17.47	16.35	13.77	9.87	6.12	*	3.32	1.52
	8	11.96	16.35	15.39	12.80	8.97	6.06	4.58	*	1.48
	9	11.84	15.25	14.83	12.22	8.62	5.85	4.55	3.28	*

4BFV

3BFV

4FT4

Fig. S5 The molecular structures of reference compounds 4FBV, 4BFV, 3BFV and 4FT4.

Fig. S6 Measured voltage-dependent transmittance change curve for SNUP04 at 40°C, $\lambda = 633$ nm and 1 kHz.

4. Compositions of mixtures SNUP03 and SNUP04

	1	
Code	Compound structures	wt%
1	R-{	20
2		10
3	R - F - F - F' - F' - F' - F' - F' - F'	55
4		15

Table S4. Chemical structures and compositions of LC mixture SNUP03.

 Table S5. Chemical structures and compositions of LC mixture SNUP04.

Code	Compound structures	wt%
1	R-{	
2		
3	R - F - F - F - F - F - F - F - F - F -	90
4		
2TFV	C_2H_5	10

5. Geometric data

Optimized geometry for molecular **3BFV**

С	-4.39565200	-1.31160500	-0.21310500
С	-5.75423800	-1.27088000	-0.50312000
С	-6.41135600	-0.05280200	-0.70387900
С	-5.65733300	1.11869600	-0.60570000
С	-4.30440400	1.05429800	-0.31721800
С	-3.61912800	-0.14673000	-0.11013400
Н	-3.91616500	-2.26837400	-0.04209700
Н	-6.31285300	-2.19848400	-0.57052500
Н	-6.10428900	2.09357700	-0.76498300
С	-2.16586400	-0.21046700	0.18322800
С	-1.54677600	0.68838400	1.06362300
С	-1.37045200	-1.20916400	-0.39595100
С	-0.19162500	0.58211300	1.35435200
С	-0.01527300	-1.30924100	-0.10094300
С	0.60194600	-0.41647100	0.78045700
С	-7.89664700	0.00234800	-0.97469700
С	-8.73901000	0.11080600	0.32023000
Н	-8.20602700	-0.89355600	-1.52110000
Н	-8.12191600	0.85792200	-1.61999200
Н	-8.53177500	-0.75081900	0.96237800
Н	-8.41083900	1.00074800	0.87178000
С	-10.21279200	0.20445500	0.04438500
С	-11.12649400	-0.67206300	0.45051200
Н	-10.53196700	1.06350600	-0.54503800
Н	-12.17786900	-0.54999700	0.21535200
Н	-10.85554700	-1.54347000	1.03953500
С	2.08261200	-0.50311700	1.07251100
С	2.93683900	0.32263100	0.08912500
Н	2.39595200	-1.55099400	1.04219900
Н	2.27361600	-0.14825000	2.09169800
Н	2.76573200	-0.04421000	-0.93101200
Н	2.58001000	1.35895000	0.10412300
С	4.44357300	0.30539700	0.38909100

C	5.22015600	1.24785500	-0.54371900
С	5.05132200	-1.12103100	0.31432100
С	6.69507900	1.39790800	-0.11061900
Н	4.73946900	2.23076900	-0.57581100
С	6.55287700	-1.12269500	-0.05289600
Η	4.91070400	-1.62786100	1.27440900
С	7.26972900	0.10659200	0.52716100
Η	6.78817500	2.21795100	0.60981900
Η	6.66569200	-1.12789700	-1.14247200
С	8.80790400	0.03065500	0.44980200
С	9.41432800	-0.20656300	-0.94040700
Η	9.14966400	-0.77133200	1.11681800
Η	9.22149600	0.96037500	0.86294100
С	10.94648800	-0.20282100	-0.92030900
Η	9.06349000	-1.16525400	-1.33703500
Η	9.06402500	0.55937300	-1.64095200
Η	11.33569200	0.75885800	-0.57146500
Η	11.33540400	-0.97736300	-0.25170800
Η	0.25714500	1.28477900	2.04983500
Η	0.57354700	-2.09389200	-0.56615900
Η	-1.81515100	-1.90573000	-1.09793300
Η	7.29312100	1.68802800	-0.98034200
Η	5.16826600	0.85147300	-1.56520300
Η	4.50075200	-1.71195100	-0.42753800
Η	7.02188700	-2.04476600	0.30653700
Η	4.57567600	0.68083600	1.41374900
Η	7.02441000	0.13500400	1.59723300
Н	-2.13238100	1.46874200	1.53189900
F	-3.62683100	2.22789600	-0.25550000
Н	11.35946900	-0.38668100	-1.91603400

Optimized geometry for molecular 4TV

С	6.33089100	-1.07189500	0.59898900
С	7.69037000	-1.04093700	0.87942700
С	8.41808900	0.15334500	0.82432600
С	7.73214800	1.32392300	0.47941800

С	6.37332500	1.30760500	0.19597400
С	5.64548700	0.10524900	0.24938000
Н	5.78398200	-2.00571900	0.65079200
Н	8.19718900	-1.96132100	1.15218800
Н	8.27100900	2.26552000	0.43846600
Н	5.85901000	2.22490300	-0.06449500
С	1.67285800	0.04523800	-0.56614900
С	1.00519400	1.20991400	-0.98571300
С	0.92634600	-1.13960500	-0.43841200
С	-0.35515300	1.18358300	-1.26094200
С	-0.43383200	-1.15087800	-0.71678900
С	-1.10261700	0.00696700	-1.13071200
С	9.90488200	0.17143400	1.09126000
С	10.74811000	-0.02269300	-0.19349000
Н	10.16482100	-0.61721100	1.80373700
Н	10.18330700	1.12181500	1.55918700
Н	10.48805100	-0.97850800	-0.65892600
Н	10.47088800	0.76141300	-0.90911400
С	12.22568700	0.03560100	0.07133200
С	13.08473500	-0.95507300	-0.14939700
Н	12.59665000	0.97190100	0.48744800
Н	14.14200700	-0.85205800	0.06786500
Н	12.76120000	-1.90643700	-0.56168000
С	-2.59160700	-0.00266900	-1.38858400
С	-3.41412100	0.36882400	-0.13735600
Н	-2.89018000	-0.99277100	-1.74538500
Н	-2.82870500	0.70494300	-2.19115600
Н	-3.18862900	-0.34512400	0.66505500
Н	-3.07642700	1.34773300	0.22240100
С	-4.93290200	0.41252200	-0.36558300
С	-5.67746600	0.92804700	0.87627300
С	-5.51196700	-0.96421200	-0.78861700
С	-7.17691800	1.16748600	0.59276000
Н	-5.21553000	1.85206800	1.23838500
С	-6.98986000	-1.15490500	-0.38005300
Н	-5.41578300	-1.08225200	-1.87271100
С	-7.76230800	0.17203300	-0.44181600

Н	-7.32579400	2.18795600	0.22319800
Н	-7.04136100	-1.55830900	0.63699100
С	-9.29301900	0.01669200	-0.32970400
С	-9.81510500	-0.72847900	0.90788500
Н	-9.65256500	-0.50973800	-1.22353100
Н	-9.73811100	1.01780800	-0.37114000
С	-11.34868600	-0.83088200	0.97358700
Н	-9.40107700	-1.74221100	0.91818100
Η	-9.45579700	-0.24364700	1.82372500
Н	-11.71973800	-1.28010100	0.04399700
Η	-0.84804500	2.09388600	-1.58798300
Н	-0.98874900	-2.07831900	-0.61491100
Η	1.42638200	-2.04727100	-0.12219000
Н	-7.73069500	1.10153400	1.53443200
Н	-5.56102000	0.19509200	1.68419300
Н	-4.91095700	-1.76374800	-0.33904800
Н	-7.45991300	-1.90214900	-1.02821700
Н	-5.12089400	1.12838400	-1.17830600
Н	-7.57885400	0.59400800	-1.43908800
Н	1.56698500	2.12980000	-1.09578800
С	3.06659200	0.06478300	-0.28213300
С	4.25235600	0.08251300	-0.03701000
Η	-11.61699000	-1.52928400	1.77413000
С	-12.06758800	0.50046100	1.22062300
Η	-11.89781600	1.21552800	0.41151100
Η	-13.14793900	0.35342200	1.30452300
Н	-11.72342500	0.96451600	2.15061500

Optimized geometry for molecular 4TFV

С	6.11108600	-1.41129700	0.25180400
С	7.47486700	-1.49631500	0.49454900
С	8.23563900	-0.35199400	0.76327500
С	7.58422400	0.88541900	0.78409600
С	6.22530700	0.95763100	0.54069900
С	5.44256900	-0.17324000	0.26642200
Н	5.53446400	-2.30529100	0.04852000
Н	7.95846300	-2.46710100	0.48038100

Н	8.12143500	1.80322400	0.99461300
С	1.47014800	0.15200100	-0.45216700
С	0.85256500	1.41550700	-0.44795600
С	0.67845800	-0.97728300	-0.72579900
С	-0.50540800	1.53629400	-0.70916200
С	-0.67837300	-0.84059100	-0.98568200
С	-1.29764700	0.41496700	-0.98315100
С	9.72730800	-0.43961400	0.98379500
С	10.53879600	-0.21398600	-0.31636100
Н	9.98354000	-1.42134300	1.39227700
Н	10.03410200	0.30192800	1.72903300
Н	10.24758200	-0.96099600	-1.06118800
Н	10.26493800	0.76518300	-0.72839400
С	12.02237900	-0.26696100	-0.08633000
С	12.85390300	-1.14247300	-0.64308900
Н	12.42293900	0.47642400	0.60226700
Н	13.91767400	-1.13069300	-0.43383100
Н	12.50056100	-1.90160800	-1.33488800
С	-2.78126600	0.55192100	-1.23513500
С	-3.62082900	0.45097100	0.05510200
Н	-3.09960500	-0.22003900	-1.94195300
Н	-2.98117300	1.51708200	-1.71418500
Н	-3.44172700	-0.52466500	0.52483900
Н	-3.25907500	1.20276200	0.76604400
С	-5.13036500	0.64348400	-0.15598700
С	-5.89402700	0.65293700	1.17779500
С	-5.74260700	-0.42544500	-1.10020400
С	-7.37395400	1.05391500	0.99222000
Н	-5.41050500	1.33214200	1.88712900
С	-7.24184200	-0.68801700	-0.83097100
Н	-5.60765100	-0.11212300	-2.14037100
С	-7.95947900	0.58908900	-0.36552100
Н	-7.47493800	2.14232700	1.06531500
Н	-7.34783600	-1.46359100	-0.06468100
С	-9.49721600	0.47359200	-0.35218100
С	-10.09406100	-0.67221600	0.47678400
Н	-9.84339800	0.36749500	-1.38833000

Н	-9.91227800	1.42475600	0.00648300
С	-11.62804300	-0.67994100	0.46252400
Н	-9.73197500	-1.63395000	0.09511200
Н	-9.75101800	-0.60846000	1.51629200
Н	-11.99739600	0.27599700	0.85334000
Н	-11.97784300	-0.73796100	-0.57537600
Н	-0.96029100	2.52190800	-0.70751900
Н	-1.26912400	-1.72528900	-1.20177900
Н	1.14086400	-1.95706800	-0.73764500
Н	-7.96006800	0.63837900	1.81783500
Н	-5.83013900	-0.34709600	1.62422800
Н	-5.18948400	-1.36599300	-0.98949300
Н	-7.71623300	-1.08608100	-1.73428000
Н	-5.27067800	1.63049600	-0.61899000
Н	-7.72480300	1.36666300	-1.10470300
С	2.86300100	0.02652300	-0.19556200
С	4.05032000	-0.06216200	0.02080600
С	-12.23607400	-1.83011100	1.27013100
Н	-11.93255900	-1.78007100	2.32061000
Н	-11.91424900	-2.80085000	0.88008600
Н	-13.32889200	-1.80645300	1.23955700
Н	1.45221300	2.29440200	-0.24384500
F	5.62865300	2.16665800	0.57211500

Optimized geometry for molecular 4FTV

С	6.26867300	-1.39756800	0.18373000
С	7.63481300	-1.48599000	0.41558900
С	8.38558400	-0.36171400	0.77776800
С	7.71654700	0.86155000	0.90607300
С	6.35152900	0.96518800	0.67727700
С	5.60170900	-0.16627400	0.30842200
Н	5.70360100	-2.27958100	-0.09307300
Н	8.12881400	-2.44762900	0.31831100
Н	8.27420000	1.74687100	1.19542500
Н	5.84844800	1.91868900	0.78376500
С	1.62581100	0.16827900	-0.38659500
С	0.97196700	1.40409800	-0.28221400

С	0.83262200	-0.93213700	-0.76159200
С	-0.37909600	1.55883800	-0.53204700
С	-0.52392100	-0.78877400	-1.01505800
С	-1.15466900	0.45720100	-0.90638200
С	9.87885900	-0.45747700	0.98490500
С	10.68310900	-0.15453200	-0.30391500
Н	10.14274900	-1.45963400	1.33573600
Н	10.18731800	0.24187600	1.76943100
Н	10.39220100	-0.85972500	-1.08874100
Н	10.40133700	0.84471100	-0.65868900
С	12.16820100	-0.21194100	-0.08528400
С	13.00202400	-1.04803200	-0.69670200
Н	12.56820700	0.49147400	0.64447700
Н	14.06679000	-1.04259400	-0.49207500
Н	12.64925900	-1.76689300	-1.43054400
С	-2.63734000	0.60758500	-1.15436700
С	-3.48404000	0.40955300	0.12009900
Н	-2.94699300	-0.11250700	-1.91718700
Н	-2.83896100	1.60407400	-1.56272400
Н	-3.30233500	-0.59611600	0.51995400
Н	-3.13280900	1.11130900	0.88535700
С	-4.99243200	0.60883600	-0.09235800
С	-5.77017700	0.52875300	1.23070800
С	-5.58978900	-0.39853000	-1.11114600
С	-7.24894300	0.93774600	1.05420000
Н	-5.29685300	1.16133300	1.98835600
С	-7.08953600	-0.68662100	-0.87321400
Н	-5.44838800	-0.01599900	-2.12706200
С	-7.81933600	0.55443900	-0.33571900
Н	-7.35254000	2.01967300	1.19122900
Н	-7.19805900	-1.51041100	-0.15945800
С	-9.35623900	0.43001200	-0.34464000
С	-9.95430200	-0.76906700	0.40414500
Н	-9.69194800	0.38822000	-1.38876300
Н	-9.78026300	1.35423800	0.06958600
С	-11.48820500	-0.77843900	0.38118300
Н	-9.58808600	-1.70310000	-0.03767200

Н	-9.61701700	-0.77266400	1.44744100
Н	-11.86101400	0.14958700	0.83143100
Н	-11.83259600	-0.76926700	-0.66012000
Н	-0.81257800	2.54803800	-0.43870000
Н	-1.10408400	-1.65649400	-1.31020200
Н	1.30789400	-1.90086000	-0.85549900
Н	-7.84232000	0.47267700	1.84761600
Н	-5.70860400	-0.49818600	1.61141100
Н	-5.03179100	-1.34125600	-1.05855200
Н	-7.55288000	-1.02880500	-1.80466700
Н	-5.13279900	1.62351300	-0.49115600
Н	-7.58258800	1.37785300	-1.02279100
С	3.01657700	0.04784200	-0.13647100
С	4.20395400	-0.06121000	0.06998100
F	1.69051800	2.48996400	0.06985800
С	-12.09827200	-1.97946700	1.10924500
Н	-11.79991700	-1.99739700	2.16220200
Н	-11.77319300	-2.92244900	0.65855200
Н	-13.19095300	-1.95511900	1.07495400

Optimized geometry for molecular 4FTFV

С	6.04510900	-1.49776900	0.23016200
С	7.40801400	-1.60700500	0.46691500
С	8.18442500	-0.47931000	0.76060700
С	7.54990700	0.76574600	0.81298800
С	6.19131100	0.86314600	0.57528800
С	5.39387700	-0.25125100	0.27621700
Н	5.45600500	-2.37883300	0.00706400
Н	7.87856000	-2.58346800	0.42815800
Н	8.09994700	1.67090900	1.04398900
С	1.42600700	0.09308000	-0.43202400
С	0.77734600	1.33613400	-0.41993000
С	0.62915100	-1.03058900	-0.72076200
С	-0.57436300	1.47445900	-0.67727600
С	-0.72742200	-0.90290400	-0.98098800
С	-1.35379700	0.35005200	-0.96504000
С	9.67534400	-0.59202800	0.97431200

С	10.48575700	-0.34340700	-0.32233000
Н	9.91979400	-1.58722400	1.35655700
Н	9.99378900	0.12614200	1.73729900
Н	10.18240600	-1.06684100	-1.08540200
Н	10.22381100	0.64973400	-0.70776900
С	11.96919800	-0.42238000	-0.09884100
С	12.78684300	-1.29329100	-0.68271900
Н	12.38196400	0.29627800	0.60850100
Н	13.85139900	-1.30167100	-0.47735900
Н	12.42069000	-2.02806300	-1.39387300
С	-2.83724500	0.48553100	-1.21676400
С	-3.67671400	0.37288100	0.07277900
Н	-3.15134100	-0.28326100	-1.92849000
Н	-3.03929600	1.45300000	-1.68956200
Н	-3.49753600	-0.60674300	0.53384500
Н	-3.31649200	1.11901100	0.79029000
С	-5.18586400	0.56672900	-0.13958400
С	-5.95218500	0.56143900	1.19265500
С	-5.79560400	-0.49213100	-1.09655200
С	-7.43148900	0.96521600	1.00785700
Н	-5.47009500	1.23232400	1.91078200
С	-7.29609700	-0.75560900	-0.83502600
Н	-5.65683400	-0.16860900	-2.13311900
С	-8.01331800	0.51710100	-0.35706500
Н	-7.53222600	2.05265300	1.09393600
Н	-7.40568300	-1.54016200	-0.07847800
С	-9.55122900	0.40398500	-0.35039900
С	-10.15327500	-0.75024900	0.46294300
Н	-9.89373400	0.31056900	-1.38897200
Н	-9.96593900	1.35165900	0.01768900
С	-11.68721800	-0.75505700	0.44186100
Н	-9.79120600	-1.70821300	0.07187200
Н	-9.81472900	-0.69888000	1.50459400
Н	-12.05654600	0.19701800	0.84198600
Η	-12.03246400	-0.80050000	-0.59818500
Н	-1.00531900	2.46890700	-0.65737100
Н	-1.31124600	-1.78849400	-1.20776100

Н	1.10138600 -2.00511300 -0.74203700
Н	-8.01980000 0.53978200 1.82678600
Н	-5.88991000 -0.44370400 1.62763200
Н	-5.24390300 -1.43440800 -0.99318900
Н	-7.76809400 -1.14217800 -1.74450700
Н	-5.32545400 1.55864300 -0.59211400
Н	-7.77506500 1.30287600 -1.08637600
С	2.81656300 -0.01537600 -0.17646800
С	4.00265300 -0.11866000 0.03637400
С	-12.30086400 -1.91326600 1.23353900
Н	-12.00224700 -1.87562500 2.28592200
Н	-11.97886600 -2.88008600 0.83402400
Н	-13.39347000 -1.88734900 1.19812700
F	5.61209100 2.07707500 0.63717100
F	1.49888800 2.44166100 -0.15393400