Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Nano-wired Polyaniline/VS $_2$ Composite Materials for All-solid-state Supercapacitor and Zinc-ion Battery Applications

Saad Zafar, Santosh K. Singh*, and Bimlesh Lochab*

^aDepartment of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR-201314

*Bimlesh Lochab

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv

Nadar Institution of Eminence, Delhi-NCR-201314, India

Email: bimlesh.lochab@snu.edu.in

*Santosh K. Singh

Electrochemical Energy Laboratory, Department of Chemistry, School of Natural Sciences, Shiv

Nadar Institution of Eminence, Delhi-NCR-201314, India

Email: santosh.singh1@snu.edu.in

Table of content:

Figure S1. BJH pore size distribution curve of (a) PANI, VS₂, and PANI/VS₂, (b) TGA curve of VS₂ and PANI/VS₂---S4

Figure S2. Electrochemical performances in 0.5 M H_2SO_4 electrolyte. (a) CV curves for PANI, VS₂, and PANI/VS₂ samples at a scan rate of 10 mV/s, (b) GCD curves at the current density of 2 A.g⁻¹ (c) CV curves of PANI/VS₂ in three electrodes from 5 mV s⁻¹ to 100 mV s⁻¹ (d) GCD curves of PANI/VS₂ in three electrodes from 2 A g⁻¹ to 20 A.g⁻¹ (e) CV curves of PANI/VS₂ in two electrodes from 5 mV s⁻¹ to 100 mV s⁻¹ (f) GCD curves of PANI/VS₂ in two electrodes from 1 A g⁻¹ to 5 A g⁻¹ ---S5

Figure S3. Floating test as a function of capacitance at 1 A g⁻¹. Test experiment with 5 GCD cycles and 2 h of voltage holding till 15 cycles. The floating test analysis of the QSSC device shows \sim 68% retention in the specific capacitance after the durability test.----S6

Figure S4. Post-mortem SEM analysis of the QSSC device after 500 cycles (a) low and (b) high resolution image. An agglomeration of the active materials is observed.----S6

Figure S5. Electrochemical performance of PANI in 0.5 M H_2SO_4 electrolyte. (a) CV curves at different scan rates, and (b) GCD curves at different current density. ---S7

Figure S6. Electrochemical performance of VS_2 in the three-electrode system, (a) EIS impedance, (b) CV curves at different scan rates, and (c) GCD curves at different current density—S8

Figure S7. Electrochemical performance of $PANI/VS_2$ in the three-electrode system, (a) EIS impedance, and (b) capacity retention plot at the different current rate, ----S9

Figure S8. Electrochemical performance of $PANI/VS_2$ in the two-electrode system, (a) EIS impedance, and (b) capacity retention plot at the different current rates. -----S9

Figure S9: Cycling stability data recorded at the GCD current rate of 0.5 A g⁻¹.----S10

Table 1. Summary of features of various cathode materials in aqueous ZIBs, such as energy storage mechanisms, testing voltage, discharge capacity, and electrolyte components-----S10

Supplementary video S1. Demonstration of ZIB by emitting the SNIoE logo using 36 red LED

bulbs of 3 V connected in parallel (at 3x speed). ----S11

References.S11

Experimental details for surface area and pore size distribution. The BET surface area and pore volume were determined by using nitrogen adsorption/desorption isotherms at 77.35 K on Quantachrome analyzer. All samples were degassed for 6 h at 150 °C prior to analysis. BET surface area was measured using the BET (Brunauer-Emmett-Teller) method in relative pressure range of P/P_{o} (0.05–0.3) and total pore volume (V_t) was taken at $P/P_{o} = 0.99$. Total micropore area (S_{micro}) , external surface area (S_{ext}) , and micropore volume (V_{micro}) were determined using *t*-plot method. Mesopore volume was calculated as the difference of total pore volume (Vt) and micropore volume (V_{micro}). The mesoporous nature of the material is further confirmed by the experimental determination using the Barrett–Joyner–Halenda (BJH) pore size distribution curves.

Micropore area and micropore volume were calculated from de Boer's linear thickness plot (tplot).

Thickness of the adsorbed layer of N_2 was calculated according to de Boer's equation: Thickness of adsorbent (in Å) = $0.88(P/P_0)^2 + 6.45(P/P_0) + 2.98$ Equation (S1a)

According to de Boer's formula,

Micropore area = slope \times 15.47 Equation S1b Micropore volume = intercept \times 0.001547 Equation S1c

From the desorption curve, $1/[W(P_0/P) - 1)]$ vs P/P_0 linear plot was obtained. 'W' is the weight of adsorbate (N_2) per unit mass of adsorbent. The value of 'W' was derived from sorbed volume of N_2 (V), Density of N_2 (0.808 g L⁻¹) and weight of the adsorbate taken.

Specific surface area was calculated from the linear plot of $1/[W(P_o/P) - 1)]$ vs P/P_o .

 $W_m = \frac{1}{Slope + Intercept}$

Equation S2a

Where, W_m = Weight of the adsorbate as monolayer

$$W_m N_A A_C$$

Total Surface Area, $S_{total} = \frac{VV m^{IV} A^{A} CS}{M}$ Equation S2b N_A = Avogadro Number, A_{CS} = Cross sectional area of the adsorbate (16.2 Å² mol⁻¹ for N₂), M = MW of Adsorbate (28.013 g mol⁻¹ for N₂)

$$S_{total}$$

Specific Surface Area, S = WW = Weight of the adsorbent taken

Equation S2c

Figure S1. (a) BJH pore size distribution curve of PANI, PANI/VS₂ and VS₂ composite (b) TGA curve of VS₂ and PANI/VS₂.

Figure S2. Electrochemical performances in 0.5 M H₂SO₄ electrolyte. (a) CV curves for PANI, VS₂, and PANI/VS₂ samples at a scan rate of 10 mV/s, (b) GCD curves at the current density of 2 A g^{-1} , (c) CV curves of PANI/VS₂ in three electrodes from 5 mV s⁻¹ to 100 mV s⁻¹ (d) GCD curves of PANI/VS₂ in three-electrode from 2 A g^{-1} to 20 A g^{-1} , (e) CV curves of PANI/VS₂ in two-electrode from 5 mV s⁻¹ to 100 mV s⁻¹ to 100 mV s⁻¹ to 100 mV s⁻¹ to 100 mV s⁻¹.

Figure S3. Floating test as a function of capacitance at 1 A g⁻¹. Test experiment with 5 GCD cycles and 2 h of voltage holding till 15 cycles. The floating test analysis of the QSSC device shows $\sim 68\%$ retention in the specific capacitance after the durability test.

Figure S4. Post-mortem SEM analysis of the QSSC device after 500 cycles (a) low and (b) high resolution image. An agglomeration of the active materials is observed.

Figure S5. Electrochemical performance of PANI in $0.5 \text{ M H}_2\text{SO}_4$ electrolyte. (a) CV curves at different scan rates, and (b) GCD curves at different current density.

Figure S6. Electrochemical performance of VS_2 in a three-electrode system, (a) EIS impedance, (b) CV curves at different scan rates, and (c) GCD curves at different current density.

Figure S7. Electrochemical performance of $PANI/VS_2$ in the three-electrode system, (a) EIS impedance, and (b) capacity retention plot at the different current rates.

Figure S8. Electrochemical performance of $PANI/VS_2$ in the two-electrode system, (a) EIS impedance, and (b) capacity retention plot at the different current rates.

Figure S9. Cycling stability data recorded at the GCD current rate of 0.5 A g⁻¹.

Table 1. Summary of features of various cathode materials in aqueous ZIBs, such as energy storage mechanisms, testing voltage, discharge capacity, and electrolyte components

Cathode material	Reaction mechanism	Testing voltage (V)	Discharge capacity	Electrolyte components	Reference
α–MnO ₂	Zn ²⁺ insertion/extraction	0.7-2.0	210 mAhg ⁻¹ (21 mAg ⁻¹)	1 M ZnSO ₄	1
α-MnO ₂	Zn ²⁺ insertion/extraction	1.0-1.9	210 mAhg ⁻¹ (0.5 C)	Zn(NO ₃) ₂	2
β–MnO ₂	Zn ²⁺ insertion/extraction	0.8-1.9	307 mAhg ⁻¹ (0.32 C)	3 M Zn(CF ₃ SO ₃) ₂	3
ZnMn ₂ O ₄	Zn ²⁺ insertion/extraction	0.8-2.0	150 mAhg ⁻¹ (50 mAg ⁻¹)	3 M Zn(CF ₃ SO ₃) ₂	4
Mn ₃ O ₄	Zn ²⁺ insertion/extraction	0.8-1.9	239.2 mAhg ⁻¹ (100 mAg ⁻¹)	2 M ZnSO ₄	5
FeFe(CN) ₆	Zn ²⁺ insertion/extraction	1.0-2.0	112 mAhg ⁻¹ (10 mAg ⁻¹)	1.0 M Zn(OAc) ₂ in [Ch]OAc + water	6
Zn ₃ V ₂ O ₇ (OH) ₂ .2H ₂ O	Zn ²⁺ insertion/extraction	0.2-1.8	213 mAhg ⁻¹ (50 mAg ⁻¹)	1 M ZnSO ₄	7
Na ₃ V ₂ (PO ₄) ₂ F ₃	Zn ²⁺ insertion/extraction	0.8-1.9	64.7 mAhg ⁻¹ (80 mAg ⁻¹)	2 M Zn(CF ₃ SO ₃) ₂	8
PANI/VS ₂	H ⁺ /Zn ²⁺ insertion/ extraction	0.4-1.9	219 mAhg ⁻¹ (100 mAg ⁻¹)	1 M Zn(CF ₃ SO ₃) ₂	Our work

Supplementary video S1. Demonstration of ZIB by emitting the SNIoE logo using 36 red LED bulbs of 3 V connected in parallel (at 3x speed).

References

- 1. Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Electrochemically-Induced Reversible Transition from the Tunneled to Layered Polymorphs of Manganese Dioxide. *Sci. Rep.* **2015**, 4, 6066.
- 2. Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc ion chemistry: the Rechargeable Zinc Ion Battery. *Angew. Chem., Int. Ed.* **2012**, 51, 933–5.
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. *Nat. Commun.* 2017, 8, 405.
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn₂O₄ Cathode in Zn-(CF₃SO₃)₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.
- Hao, J. W.; Mou, J.; Zhang, J. W.; Dong, L. B.; Liu, W. B.; Xu, C. J.; Kang, F. Y. Electrochemically Induced Spinel-Layered Phase Transition of Mn₃O₄ in High Performance Neutral Aqueous Rechargeable Zinc Battery. *Electrochim. Acta* 2018, 259, 170–178.
- 6. Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte. *ACS Appl. Mater. Interfaces* **2016**, 8, 12158–64.
- Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. *Adv. Mater.* 2018, 30, 1705580.
- Li, W.; Wang, K.; Cheng, S.; Jiang, K. A Long-Life Aqueous Zn-Ion Battery Based on Na₃V₂(PO₄)₂F₃ Cathode. *Energy Storage Mater.* **2018**, 15, 14–21.