Supplementary data

Fabrication of photoluminescent nanoparticles from carbazole-derived chalcones: a study of optical properties, cell biomarking, and metabolism

Susana Lucía Estrada-Flores, ${ }^{\text {a }}$ Cesar Garcias-Morales, ${ }^{*}$ a Catalina M. Pérez Berumen, a Arxel de LeónSantillán, ${ }^{\text {b }}$ Mario Rodríguez, ${ }^{\text {c }}$ Juan Pablo García Merinos, d Jesús A. Claudio-Rizo, ${ }^{\text {a }}$ Eder Iván MartínezMora ${ }^{\text {a }}$

${ }^{a}$ Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, México. Email: cgarcias@uadec.edu.mx
${ }^{b}$ Conacyt-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna H. 140, 25294 Saltillo, Coah, Mexico
‘Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, México
${ }^{\text {d/Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ed.B-1, C.U., Morelia, Michoacán 58030, Mexico }}$

Chalcone synthesis

The synthesis of the chalcones was carried out by means of the Claisen-Schmidt condensation reaction (Scheme 1), in a flask 0.486 mmol of N -(4-formylphenyl)carbazole and 0.486 mmol of the corresponding acetophenone were placed, to the mixture were added 30 mL of EtOH and 0.1 mL of a $\mathrm{KOH} 10 \%$ solution as catalyst, the mixture was stirred and heated to $65^{\circ} \mathrm{C}$, the reaction was monitored using thin layer chromatography and was terminated when the reagents had been consumed. . The solvent was removed by rotary evaporation and the solid purified by recrystallization using a 70:30 EtOH-ethyl acetate mixture.
(2E)-3-[4-(9H-carbazol-9-yl)phenyl]-1-(2,4-difluorophenyl)prop-2-en-1-one (M1). In a 50 mL round bottom flask, 0.486 mmol of N -(4-formylphenyl)carbazole and 0.486 mmol of 2,4 difluoroacetophenone dissolved in 30 mL of ethanol were placed, obtaining a yellow solid, 88.9% yield (mechanochemical synthesis). Melting point: 167.4-168.6 ${ }^{\circ} \mathrm{C}$, FTIR cm ${ }^{-1}, 1663$ (C=O); 1595, 1516, 1450 (C=C-C), 1364, 1334 (C-N); 1140, 1096, 1038 (C-F). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 7.03 (td 1H), 6.94 (ddd, 1H), 7.95 (dt, 1H), 7.41 (d, J=15.4 Hz, 1H), 7.68 (d, J=15.4 Hz, 1H), 7.89 (d, J=7.86 Hz, 2H), 7.51 (d, 2H), 7.59 (d, 2H), 7.26-7.23 (m, 2H), 7.32 (d, J=6.6 Hz, 2H), $8.15(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 143.3,120.4,140.7,123.7,123.4,143.3,190.9$, 120.5, 143.7, 133.4, 130.11, 123.7, 140, 140.3, 109.7, 127.1, 126.1, 120.5, 120.8.
(2E)-3-[4-(9H-carbazol-9-yl)phenyl]-1-(3,4-difluorophenyl)prop-2-en-1-one (M2). In a 50 mL round bottom flask, 0.486 mmol of N -(4-formylphenyl)carbazole and 0.486 mmol of 3,4 difluoroacetophenone dissolved in 30 mL of ethanol were placed, obtaining a yellow solid,
yield 95.8% (mechanochemical synthesis). Melting point: 166.5-167.9 ${ }^{\circ} \mathrm{C}$, $\mathrm{FTIR} \mathrm{cm}^{-1}, 1666$ (C=O); 1586, 1512, 1480, 1450 (C=C-C), 1364, 1336 (C-N); 1109, 1029 (C-F). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (CDCl_{3}): 7.41-7.53 (m, 1H), 7.28-7.36 (m, 1H), 7.84-7.94 (m, 1H), 7.53 (d, J=15.7 Hz, 1H), 7.92 (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.89(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (d, J=8.25 Hz, 2H), 7.44 (m), 7.33 (d, J=7.75 Hz, $2 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=7.75 \mathrm{~Hz}, 2 \mathrm{H})^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 117.2,149.6,117.9,125.4,135.8,187.5$, $120.5,144.6,133.3,130.16,123.8,140.1,140.3,109.8,127.2,126.2,125.5,121.3$

Spectrum 1. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of M 1 .

Spectrum 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of M 1 .

Spectrum 3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of M 1 .

Spectrum 4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HETCOR spectrum of M 1.

Spectrum 5. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of M 2 .

Spectrum 6. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectrum of M 2.

Spectrum 7. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of M 2 .

Spectrum 7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HETCOR spectrum of M 2 .

Spectrum 8. HRMS for M1

Spectrum 8. HRMS of M2

Solvatochromism

Solutions at a concentration of $1 \times 10^{-4} \mathrm{M}$ of $\mathbf{M 1}$ and $\mathbf{M} 2$ were prepared in: acetonitrile, methanol, ethanol, acetone, propanol, methylene chloride, THF, ethyl acetate, chloroform, chlorobenzene, ethyl acetate, ethyl ether, toluene, dioxane and hexane HPLC grade; its absorption spectrum and its emission spectrum were obtained. The interaction of the solvent in the photoluminescence was studied in terms of the Lippert-Mataga equation.

Aggregation Induced Emission Enhancement

In order to evaluate whether the molecules M 1 and M 2 exhibited the AIEE effect, a 1×10^{-3} M solution in THF of M1 and M2 was prepared as stock solutions. Vials were numbered from 1 to 10, adding different ratios of THF-water to each one with 1 mL syringes, sonicating for 10 minutes, for later reading in the JENWAY 7315 Spectrophotometer and in the fluorescence spectrophotometer.

Nanoparticles fabrication by microemulsión method

The manufacture of M1 and M2 nanoparticles was carried out by the microemulsion method for fluorophores reported (2016). Three different concentrations ($0.11,0.22$ and 0.44 g) of two different surfactants (Aerosol-OT and Triton X-100) were tested; the surfactant and $300 \mu \mathrm{~L}$ of 1-butanol were dissolved in THF- $\mathrm{H}_{2} \mathrm{O}$.

Then, 1.2 mL of the fluorophore dissolved in THF was added to a concentration of 1×10^{-3} M . Half an hour later, $100 \mu \mathrm{~L}$ of pure triethoxyvinylsilane (VTES) were added to the system, stirring for 1 hour. Finally, the doped nanoparticles were precipitated by adding $20 \mu \mathrm{~L}$ of aminopropyltriethoxyslane (APTES) shaking for 20 hours and centrifuged at 1000 rpm for 10 minutes.

To remove excess surfactant, the suspension obtained was dialyzed with a 14 KDa cellulose membrane for 24 hours. Finally, to eliminate larger particles, the suspension was filtered with a $0.22 \mu \mathrm{~m}$ microfilter.

Evaluation of cell staining capacity and study of cell metabolism

Colon and breast cancer cell lines were purchased by ATCC microbiologics. For cellular authentication, a comprehensive analysis report interprets both karyotypically cancer cell lines, this includes an electropherogram supporting the allele calls at each locus, known reference profiling against the ATCC human STR database and a comprehensive interpretation of results, this done by the provider. For samples with human blood, statements that appropriate ethics committee approval and informed written consent of all participants were obtained by the Faculty of Chemical Sciences of the Autonomous University of Coahuila (Number protocol: P-FCQ-H-01-09-21-2). To obtain monocyte culture, a human blood sample was centrifuged for 30 min at 4000 rpm containing 2 mL of
ficol. Subsequently, the supernatant (plasma) was removed, and the cells deposited at the solid-liquid interface were extracted. Said cells were then deposited in a conical tube to be washed with PBS 1X, centrifuging them for 10 min and discarding the supernatant. After that, the extracted cells were transferred to a Falcon tube where RPMI culture medium was added in a ratio of 10.44 g per liter of solution and $20 \mu \mathrm{~L}$ of penicillin-streptomycin antibiotic. The cells were incubated at $37^{\circ} \mathrm{C}$, morphologically identified by light microscopy and counted in a Neubauer chamber to obtain cell cultures with a density of 30,000 cells $/ \mathrm{mL}$.

For fibroblast culture, they were extracted from a fragment of porcine skin of a recently slaughtered animal which was granted by the municipal slaughterhouse and following the NOM-062-ZOO-1999 recommendations. Porcine skin and subcutaneous fat were scraped and recovered to a mass of 15 g . Subsequently, triplicate washes were performed with 25 mL of sterile PBS 1 X for 10 min , shaking with the help of a vortex. The tissue was then recovered and was minced with 100 mL of sterile PBS 1 X .45 mL of the mixture was placed in a Falcon tube and 5 mL of trypsin $1 \mathrm{X}, 500 \mu \mathrm{~L}$ of collagenase solution (14 units) and $10 \mu \mathrm{~L}$ of penicillin-streptomycin antibiotic were added for proteolytic degradation of extracellular matrix, and it was stirred for 1 h at $37^{\circ} \mathrm{C}$. Said medium was minced again to later be centrifuged for 5 min to rescue the cell button. Finally, to prepare the culture medium, the rescued cells were mixed with 1.044 g of DMEM culture medium (Dulbecco's Modified Eagle's Medium), $10 \mu \mathrm{~L}$ of antibiotic and adjusted to a final volume of 50 mL with sterile PBS 1 X . The cells were incubated at $37^{\circ} \mathrm{C}$, morphologically identified by light microscopy and counted in a Neubauer chamber to obtain cell cultures with a density of 30,000 cells $/ \mathrm{mL}$.

Hemolysis test: For samples with human blood, statements that appropriate ethics committee approval and informed written consent of all participants were obtained by the Faculty of Chemical Sciences of the Autonomous University of Coahuila (Number protocol: P-FCQ-H-01-09-21-2). A tube of human blood was centrifuged at 3000 rpm , at a temperature of $5^{\circ} \mathrm{C}$ for 15 minutes, then the supernatant was removed, and 3 washes were made with Alsever's solution. For the preparation of the erythrocyte solution, a $100 \mu \mathrm{~L}$ aliquot of centrifuged blood was taken and 10 mL of Alsever was added. Finally, they were kept frozen until the moment of use. In 1.5 mL Eppendorf tubes, $150 \mu \mathrm{~L}$ of each type NPs suspension and $112 \mu \mathrm{~L}$ of erythrocyte solution were placed; subsequently, the volume of each tube was made up with Alsever solution. They were incubated for 1 h at $37^{\circ} \mathrm{C}$ with orbital shaking at 100 rpm . The tubes were then centrifuged for 1 minute at 1000 rpm . Aliquots of $200 \mu \mathrm{~L}$ were taken and added to a microplate. The absorbance of the samples was measured at 415 nm and the percentage of hemolysis was measured with the equation 1 (eq. 1):

Hemolysis (\%) $=\left(\frac{A_{h}-A_{C n}}{A_{C p}-A_{C n}}\right) * 100 \quad$ (eq. 1)

Where: $A_{h}, A_{c n} y A_{c p}$ are the absorbances for samples, negative control (Alsever's solution) and positive control (water), respectively.

Cell viability: The metabolic activity of human monocytes, porcine dermis fibroblasts and human colon and breast cancer cells being in contact with each type NPs suspension was evaluated by the MTT assay. The cells were cultured in RPMI (mononuclear cells) or DMEM (fibroblasts and cancer cells) medium supplemented with $10 \mathrm{wt} . \%$ fetal bovine serum (FBS, Corning) and antibiotics (Sigma-Aldrich) in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ and 95% air at $37^{\circ} \mathrm{C}$. For this, $150 \mu \mathrm{~L}$ of cell suspension ($30000 \mathrm{cells} / \mathrm{mL}$) were seeded over 100 $\mu \mathrm{L}$ of each NPs suspension in polystyrene culture plates and incubated by 24 and 72 h at 37 ${ }^{\circ} \mathrm{C}$. PBS-1X was used as the positive control. At the evaluation time, $15 \mu \mathrm{~L}$ of $3-(4,5-$ dimetilthiazol-2-yl)-2,5-diphenyltetrazolium) solution (1 wt.\% in sterilized PBS-1X) was added and incubated for 2 h more. After that, 2 mL of propan-2-ol was added to dissolve the resulting blue formazan crystals. Aliquots of $200 \mu \mathrm{~L}$ were taken from the liquid medium and the absorbance was measured at 560 nm (ThermoScientific MultiSkan Sky UV-Vis spectrophotometer). Cell viability was calculated using Equation 2 (eq. 2):

$$
\text { Cell viability }(\%)=\left(A_{\text {sample }} / A_{\text {control }}\right) * 100 \text { (eq. 2) }
$$

Where $A_{\text {sample }}$ and $A_{\text {control }}$ represent the absorbances for each sample or formulation and PBS-1X, respectively. Values less than 60% cell viability are considered cytotoxic.

Cell proliferation: In this assay, there were observed stained cells with the live/dead fluorescent reagent containing calcein-AM and ethidium homodimer, growing in contact with each type of NPs suspension. For this, 1 mL of cell culture (30000 cell) was mixed with 1 mL of each type of NPs suspension and incubated at $37^{\circ} \mathrm{C}$ for 48 h . After incubation, cells were stained with the live/dead fluorescent reagent. PBS-1X was used as control for comparison. Stained cells were transferred to a slide and were inspected with a VELAB VE146YT fluorescence microscope using an objective with 40 magnifications (40X). Excitation of samples was conducted with a green LASER ($\lambda=532 \mathrm{~nm}$, for ethidium homodimer and $\lambda=427 \mathrm{~nm}$, for calcein). To appreciate the effect of anticancer phototherapy, samples with cancer cell lines were exposed to 230 nm UV light for 1 h .

Staining of the nanoparticles with chalcones for induced cell selectivity: 1 mL of each type of NPs suspension was stained using $300 \mu \mathrm{~L}$ of rhodamine-b (300 ppm), the mixture was vortexed for 5 minutes and incubated at $37^{\circ} \mathrm{C}$ for 3 h ; subsequently, the NPs were washed 3 times with sterile PBS 1X to remove excess rhodamine-b. Subsequently, the NPs stained with rhodamine were dispersed in 1 mL of cell suspension of cancer cell lines (colon and breast) and incubated for 24 h at $37^{\circ} \mathrm{C}$ to achieve internalization of the stained NPs in the cells. The cells were centrifuged and washed with sterile PBS 1X and observed under a fluorescence microscope (VELAB VE-146YT), using red laser ($\lambda=532 \mathrm{~nm}$) for rhodamine excitation, in order to appreciate the biomarker effect.

Figure S1. Absorption spectra of M1 titrations with Lewis and Brönsted acids and bases.

Figure S2. Absorption spectra of M2 titrations with Lewis and Brönsted acids and bases.

Computational modeling

Molecular modeling was performed in the GaussView program. All calculations were carried out in GAUSSIAN 09, using the B3Lyp functional. All CHON atoms were represented by the bases $6-31 \mathrm{G}(\mathrm{d}$,$) . The energies were calculated in the gas phase until its structural$ optimization at 298.15 K . A frequency analysis of all the structures was carried out during the optimization to rule out that the structure was not a local minimum.

IR Frequency $\mathbf{c m}^{-1}$	IR intensity
12.9754	0.2382
20.9071	0.2093
23.1064	0.2226
42.5861	0.3032
51.3837	0.152
66.5005	4.3173
91.559	4.382
102.3274	0.4554
114.1723	0.5348
121.1572	1.2009
137.37	3.0536
154.0253	0.9785
169.7582	7.7776
202.3227	0.8334
227.8227	0.4383

234.6803	0.4951
257.2118	0.1908
283.171	5.4637
292.643	0.6115
295.2308	2.5069
327.1563	3.8211
361.3929	1.4712
377.0015	0.7548
389.2509	7.3969
421.006	7.8342
427.0477	5.6922
437.1191	2.4521
441.7855	10.9897
461.1752	6.3911
462.7802	7.0187
477.4919	1.0712
520.6174	7.2649
531.8163	1.6991
539.2094	6.2955
558.2801	29.2805
577.2597	2.2526
582.8028	0.3161
593.528	29.6908
626.5731	1.2492
627.8458	0.0998
636.8913	7.2898
654.5728	5.7531
658.6447	1.565
683.5777	5.1134
716.1373	4.9538
721.8559	6.6933
734.4478	0.809
740.7638	15.7892
755.2458	6.2195
756.1096	4.3193
761.478	16.2124
765.0972	81.1431
774.3836	0.3909
789.9364	2.78
832.6036	12.7047
844.1071	0.7101

848.0794	59.4824
850.7623	12.2509
868.3006	1.6986
870.1889	4.472
873.9941	1.1381
897.9547	9.9758
931.9342	1.6483
932.4002	3.4075
933.2049	0.9632
955.285	4.6879
965.3108	7.2034
967.6102	1.4109
970.182	1.0314
974.0424	0.3774
976.606	1.4634
997.8819	42.321
1017.7694	35.1561
1022.103	2.7719
1036.2964	1.0512
1051.3546	2.5035
1059.271	7.0297
1094.9549	52.8434
1131.7044	23.7646
1136.8873	137.0401
1148.8202	7.4159
1151.8928	6.6941
1183.9128	37.2909
1186.4132	4.7437
1193.5956	0.044
1203.7599	49.0992
1222.3468	12.5149
1243.5768	101.5473
1256.1601	82.4423
1263.8682	6.5684
1270.2092	17.7729
1298.8361	45.0085
1313.8214	579.6278
1318.369	53.2287
1330.7571	15.8633
1342.6526	49.5988
1350.1734	2.4505

1357.8685	26.3506
1362.8217	7.4178
1382.6688	21.5465
1386.0087	140.3769
1391.1784	2.3172
1402.1787	106.0565
1466.6478	23.7649
1473.1683	96.0553
1491.8781	262.0665
1503.398	29.8741
1524.0125	32.0049
1535.55	14.0412
1543.0445	35.2273
1563.8806	203.8956
1611.0484	19.6683
1632.48	0.082
1634.6446	2.6021
1638.8262	32.5834
1653.7608	21.8939
1657.9976	324.7246
1668.6087	253.7367
1675.5572	0.5077
1694.0775	79.5848
1723.096	320.8114
3183.5894	2.2733
3185.2668	0.2569
3186.3463	1.1933
3190.1528	14.9878
3193.8935	13.8324
3195.364	5.849
3196.2755	21.5469
3207.2269	9.7219
3208.6801	36.2411
3209.5432	47.5219
3218.7217	9.0377
3220.8562	7.5648
3222.7992	10.4
3223.7106	0.34
3224.4875	5.2329
3236.387	4.2392
3245.4897	0.2403

IR Frequency $\mathbf{c m}^{-1}$	IR intensity
10.0256	0.1002
19.8245	0.0923
24.436	0.1365
44.6083	0.5872
46.2997	0.1739
68.5825	4.5674
91.1509	3.4786
104.1941	0.2535
119.1143	1.0153
122.0441	2.1365
137.0168	4.0409
153.6374	0.6367
166.969	8.6971
200.0101	0.6566
215.8994	1.0093
238.0094	1.5264
259.8013	0.5931

280.2081	0.187
294.2872	3.9284
297.0411	0.1687
325.8583	3.6559
355.4782	0.4431
370.8006	1.983
389.3807	6.4919
421.4469	8.1859
428.3826	5.3208
436.5167	3.6673
439.7121	7.0195
448.5152	1.8311
461.069	10.2056
468.43	0.6977
514.9445	7.0964
524.3195	3.9556
536.4549	6.257
569.4636	12.9281
577.2888	2.4948
582.7794	0.53
590.3008	17.4122
619.2265	16.9839
627.8097	0.6075
637.2014	7.9574
658.6282	5.9554
659.4842	7.2355
674.4915	0.6795
712.7986	7.0384
717.6316	9.5221
733.53	0.1866
740.4368	17.231
755.9252	4.8684
759.9228	22.2543
764.9724	79.2732
774.4441	0.5649
789.7073	2.8262
796.9529	35.2827
840.683	35.5871
845.1319	2.8155
852.4576	18.0736
867.9055	1.7652

869.4447	4.2808
873.3544	0.9895
901.811	29.0833
907.6961	15.3793
931.9458	1.2528
932.4698	3.8026
933.1708	1.0465
942.2664	5.9823
955.5046	4.5426
966.0265	5.5298
968.0558	1.716
970.6563	0.5355
974.4219	0.5791
977.3616	1.0297
1022.0685	2.5952
1034.0579	42.302
1036.3634	1.3298
1051.6301	2.4022
1059.604	6.9641
1090.1169	38.4757
1131.7941	10.9705
1146.1482	99.3958
1149.2163	19.5007
1152.0196	6.7429
1186.5168	4.2933
1193.7562	0.0845
1203.865	64.2615
1221.2002	96.3305
1227.0693	169.087
1246.6279	10.4956
1256.0029	82.1048
1266.2975	35.3982
1270.1352	17.6313
1299.0805	4.6311
1309.3739	62.8985
1330.3587	13.3447
1338.1936	277.4556
1344.2879	360.5067
1350.1986	2.0508
1357.7438	22.1682
1358.4701	8.4358

1379.8754	25.464
1386.0466	129.22
1391.1347	2.2549
1402.4258	100.8188
1459.1337	25.1572
1467.1324	35.5555
1491.8956	268.7536
1503.5347	29.8359
1524.1509	32.2841
1535.5763	14.2392
1562.9811	186.2691
1564.3713	123.5225
1611.1129	18.0549
1632.641	0.052
1634.7858	2.3902
1646.897	85.2156
1653.8957	21.7394
1657.7731	318.3324
1664.2342	44.3074
1675.4364	0.4722
1688.5589	68.2219
1727.3149	258.0494
1750.52030	0.047
3176.6582	5.2872
3185.4262	0.308
3186.5235	1.3553
3188.9135	10.6492
3192.6049	19.0881
3194.0205	13.0988
3195.4915	7.9884
3206.3036	9.9697
3208.7222	34.0528
3209.6124	49.4861
3218.5613	10.1424
3220.6472	7.524
3221.0608	2.3399
3222.9911	9.8311
3224.4491	4.7303
3236.4341	1.2918
3236.6705	2.4362

