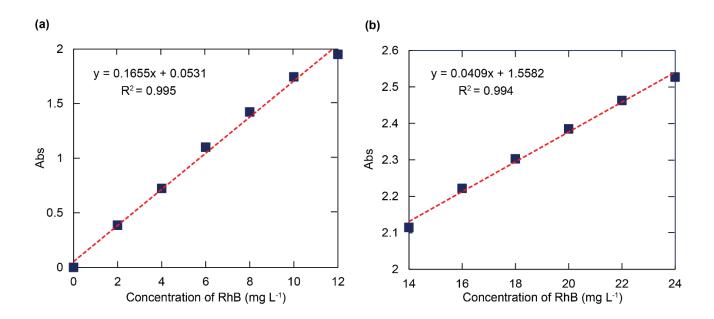

Supporting information

Efficiently improving the adsorption capacity of Rhodamine B dye in a SO₃H-functionalized chromium-based metal-organic framework


Khang M. V. Nguyen,^a Anh V. N. Phan,^a Nhung T. Dang,^a Truong Q. Tran,^a Huy K. Duong,^a Hung N. Nguyen and My V. Nguyen^{*a}

^a Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

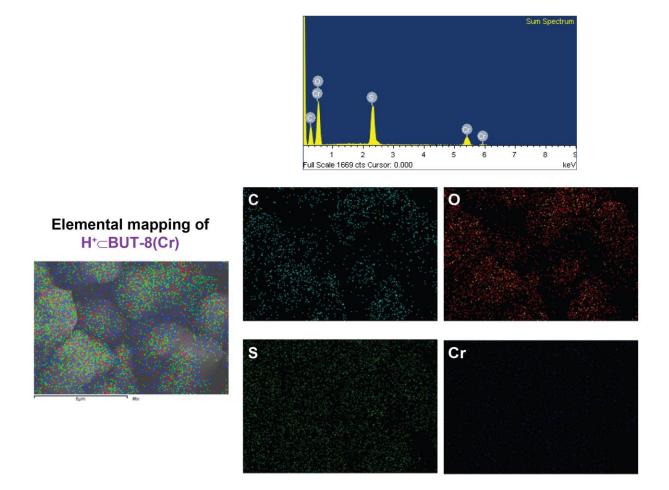

*To whom correspondence should be addressed: <u>mynv@hcmue.edu.vn</u>

Figure S1. ¹H-NMR spectrum of digested H⁺⊂BUT-8(Cr) in DMSO solvent

Figure S2. The relationship between the absorbed intensity of RhB and different concentrations of 0 - 24 mg L^{-1} by linear fitting.

Figure S3. Elemental mapping by SEM-EDX of H⁺⊂BUT-8(Cr)

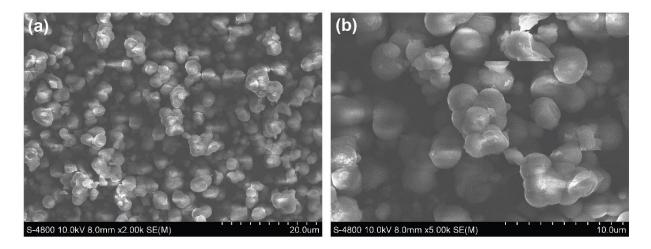


Figure S4. SEM images of H⁺ \subset BUT-8(Cr) at different scale bars of 20.0 µm and 10.0 µm, respectively

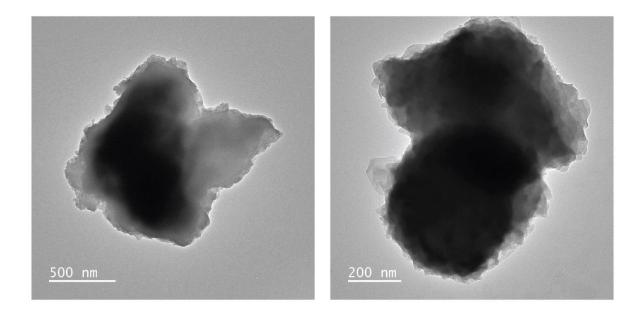
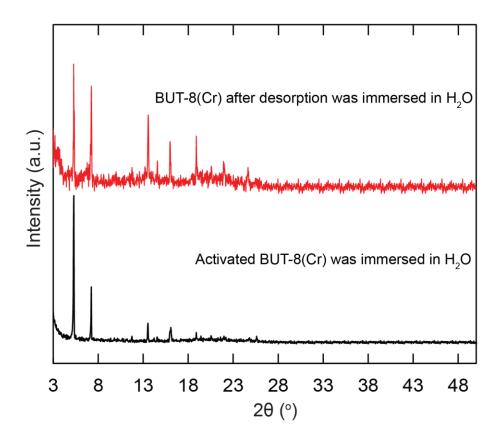
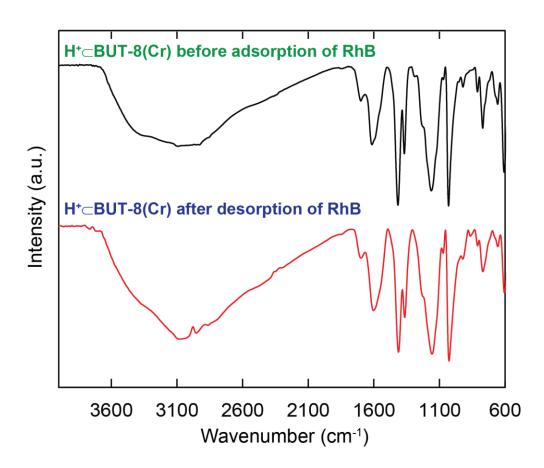
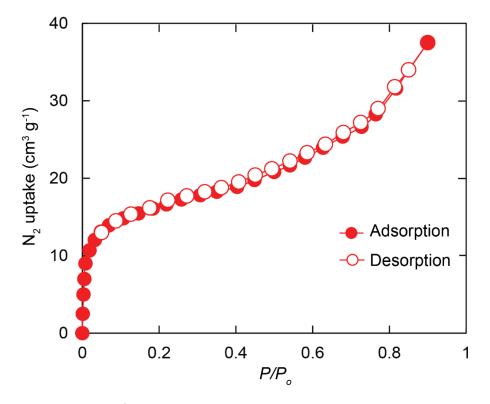
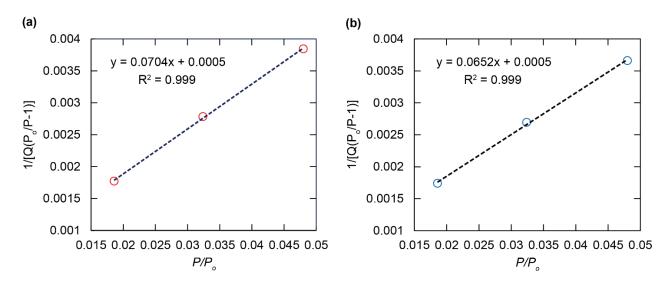




Figure S5. TEM images of $H^+ \subset BUT-8(Cr)$ at at different scale bars of 500 nm and 200 nm, respectively


Figure S6. PXRD pattern of $H^+ \subset BUT-8(Cr)$ before adsorption of RhB and immersed in water (black) as compared to the experimental pattern from the subjecting $H^+ \subset BUT-8(Cr)$ after desorption of RhB.


Figure S7. FT-IR spectrum of $H^+ \subset BUT-8(Cr)$ before adsorption of RhB (black) in comparison with FT-IR spectrum of $H^+ \subset BUT-8(Cr)$ after desorption of RhB (red).

N2 adsorption measurement and surface area prediction

The porosity analysis of activated $H^+ \subset BUT-8(Cr)$ was measured by N₂ adsorption at 77 K.

Figure S8. N₂ isotherm of H⁺⊂BUT-8(Cr) material at 77 K.

(c)

Parameters	BET model	Langmuir model
P/P _o range	0.01858 - 0.04799	0.01858 - 0.04799
Correlation Coefficient	0.999	0.999
С	141.8	130.4
$Q_{\rm m} ({\rm cm}^3{\rm g}^{-1}{\rm STP})$	14.104	15.337
Molecular cross-sectional area (S / nm ²)	0.1620	0.1620
Surface area $(m^2 g^{-1})$	61.41	66.77

$$S = \frac{Q_m \times N_A \times A}{V}$$

Where S and Q_m are the BET or Langmuir surface area and quantity adsorbed. N_A is Avogrado's number, A is the molecular-sectional area and V symbolizes the molar volume of adsorbed gas.

Figure S9. Plot of the linear region of the adsorption N_2 isotherm used for the BET equation (a), the Langmuir equation (b), and summary of parameters in the BET and Langmuir analysis (c).

Theoretical surface area prediction

The theoretical surface area of H⁺ \subset BUT-8(Cr) was calculated through the Atom Volumes and Surfaces tool of *Materials Studio* 7.0 software with a grid interval of 0.25 Å and the solvent diameter, which is equal to a nitrogen probe diameter of 3.68 Å. The accessible solvent surface area of H⁺ \subset BUT-8(Cr) was calculated to be 3482 Å². This data was converted into the surface area per gram, leading to a theoretical surface area of 2751 m² g⁻¹.

H ⁺ ⊂BUT-8(Cr)		
Crystal density (g cm ⁻³)	0.707 [1]	
Accessible solvent surface per cell $(Å^2)$	3482	
Calculated SA (m ² g ⁻¹)	2751	
Unit cell volume (Å ³)	17903 [1]	

Table S1. Summary of surface area calculation for $H^+ \subset BUT-8(Cr)$

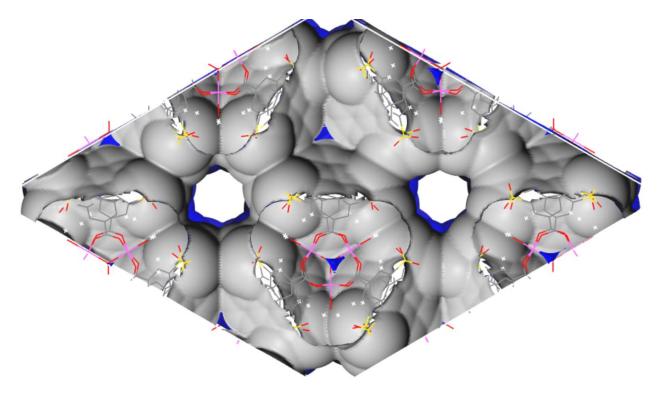


Figure S10. Accessible solvent surface and van der Waals surface of H⁺⊂BUT-8(Cr).

^[1] F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J. Li and B. Chen, A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction, *Nature Energy*, 2017, **2**, 877–883.

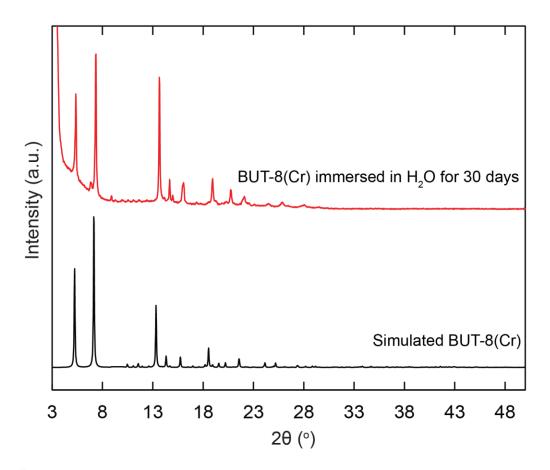
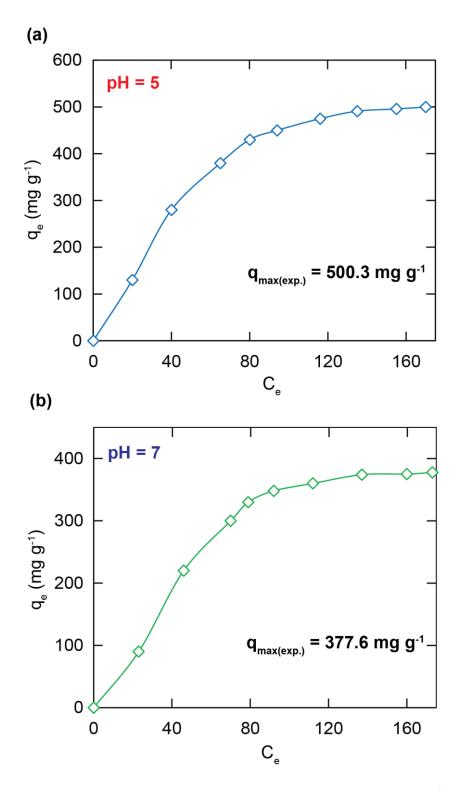



Figure S11. PXRD pattern of BUT-8(Cr) immersed in water for 30 days in comparison with the simulated structure

Figure S12. Effect of the concentration of RhB on the adsorption capacity of $H^+ \subset BUT-8(Cr)$ [m = 10 mg, $V_{RhB} = 100$ mL, C_0 : 25-175 mg L⁻¹, t = 24 h] at pH = 5 (a); pH = 7 (b).

Adsorption isothermal models

The linear forms of the Langmuir, Freundlich, and Temkin are indicated by the equations (S1)-(S3):

$$\frac{C_e}{q_e} = \frac{1}{K_L q_m} + \frac{C_e}{q_m}$$
(S1)

$$\log q_e = \log K_F + \frac{1}{n} \log C_e \tag{S2}$$

$$q_e = \frac{RT}{b} \ln(k_T C_e) \tag{S3}$$

Where $C_e \pmod{L^{-1}}$ and $q_e \pmod{g^{-1}}$ are the RhB concentration and adsorption capacity at equilibrium, respectively, $q_m \pmod{g^{-1}}$ is the theoretical maximum capacity of the RhB adsorption. $K_L (L \text{ mg}^{-1})$ and $K_F \pmod{g^{-1} (L g^{-1})^{1/n}}$ display the constants of Langmuir and Freundlich, respectively. 1/n value symbolizes the adsorption capacity index of Freundlich isotherm. Meanwhile, *R* is the gas constant, β and k_T are the constant of adsorption heat and the constant of Temkin, respectively, and *T* is the adsorption temperature.

The separation factor (R_L) is used by equation (S4):

$$R_{L} = \frac{1}{1 + K_{L}C_{O}}$$
(S4)

Where C_o and K_L are the initial concentration of RhB and the constant of Langmuir, respectively.