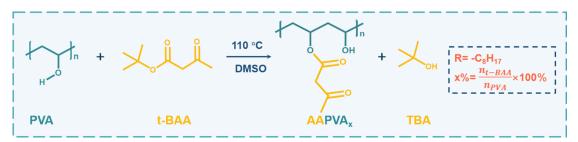
Supporting Information

Strong and Tough Octyl Enamine-grafted Polyvinyl Alcohol with Programmable Shape Deformation *via* Simple Soaking Treatment

Xiaomin Chen^{a,b}, Youwei Ma^b, Yuhong Qiao^{a,b}, Wenyao Guo^a, Yulin Min^a, Jinchen Fan^{*a,c} and Zixing Shi^{*b}.


^a College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.

^b School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China.

^c School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China

*Corresponding Authors

E-mail addresses: jcfan@usst.edu.cn (J. F.), zxshi@sjtu.edu.cn (Z. S.)

Figure S1.Synthesis of polyvinyl alcohol acetoacetate (AAPVA_x, x refers to the mole percentage of *t*-BAA to PVA including 20 mol%, 40 mol% and 60 mol%).

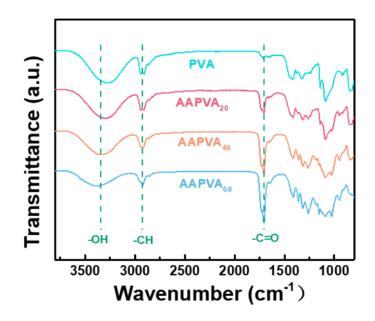


Figure S2. FT-IR spectra of PVA and AAPVA_x.

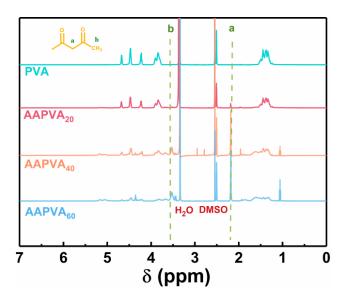


Figure S3. ¹H NMR spectrum of PVA and acetoacetylated polyvinyl alcohol(AAPVA_x) in

DMSO- d_6 .

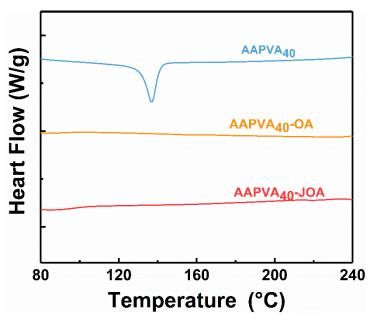


Figure S4. DSC curves of AAPVA₄₀, AAPVA₄₀-OA and AAPV₄₀-JOA films.

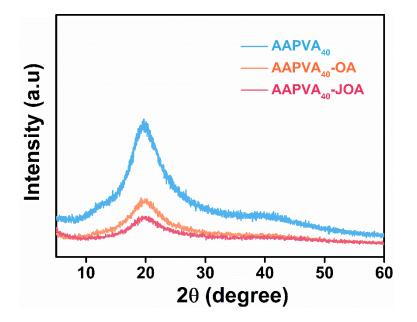
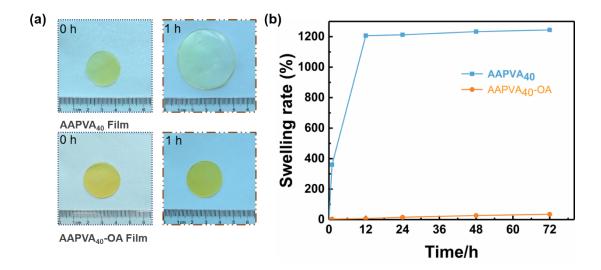



Figure S5. XRD curves of AAPVA₄₀, AAPVA₄₀-OA and AAPV₄₀-JOA films.

Figure S6. (a) Snapshots of AAPVA₄₀ and AAPVA₄₀-OA films taken at the initial time and after being immersed in water for 1 h. (b) When the testing time is prolonged to 3 d, the AAPVA₄₀-OA film still shows weight change less than 35% while AAPVA₄₀ film swells by more than 1200%.

Figure S7. Schematic diagram of hand actuator simulating good gesture changes.