Supporting Information

Colorimetric sensing of calcium carbide over banana peel using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) as rapid chemoreceptor: A point of care tool for food fraud analysis

Sonam Sonwal^a, Shruti Shukla^{b*}, Munirah Alhammadi^a, Reddicherla Umapathi^a, Hemanth P.K. Sudhani^c, Youngjin Cho^{d*}, Yun Suk Huh^{a*}

^aNanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea ^bTERI-Deakin Nanobiotechnology Centre, Division of Sustainable Agriculture, The Energy and Resources Institute, India Habitat Centre, Lodhi Road, New Delhi, 11003, India ^cDepartment of Biotechnology, School of Liberal Arts & sciences, Sree Vidyanikethan Engineering College, Mohan Babu University, Tirupati, 517102, India ^dFood Safety and Distribution Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea

Corresponding authors

Prof. Shruti Shukla: <u>shruti.shukla@teri.res.in</u> Dr. Youngjin Cho: <u>yjcho74@kfri.re.kr</u> Prof. Yun Suk Huh: <u>yunsuk.huh@inha.ac.kr</u>

Fig. S1 (A) Optimization of concentration, volume, and pH of DTNB and CaC₂ for different concentrations (0, 10, 50, 100, 150, 200, 250, 500, 750, 1000, 20000, 4000, 6000, and 10000 ppm). 15mM DTNB 9 pH (150 μ L), CaC₂ (850 μ L) condition showed the highest intensity of colorimetric signals among all four cases i.e., 1. 15mM DTNB 9 pH (150 μ L), CaC₂ (850 μ L), 2. 15mM DTNB 7 pH (150 μ L), CaC₂ (850 μ L), 3. 0.5mM DTNB 9 pH (150 μ L), CaC₂ (850 μ L), 4. 0.5mM DTNB 7 pH (150 μ L), CaC₂ (850 μ L, and **(B)** Optimization of pH 9 (1) & 7 (2), pH 9 showed the high intensity of color at lower concentration of CaC₂.

Fig. S2 (A) SEM image of CaC_2 at 10 μ m. (B–G) Distribution of all elements and their core level studies based on SEM mapping. (H-1–5) XPS data of CaC_2 .

for	the	Analyte	Results (ppm)	
		Ca	680,500	
		S	108,400	
		Si	56,100	
		Al	52,900	
		Fe	52,100	
		Sr	49,700	
		Р	49,600	
		Mg	0.00	

Table S1 High content of sulfur impurities were detected using X-ray fluorescence (XRF) analysis

responsible

colorimetric detection of CaC₂.

which

is

Fig. S3 (A-F) Procedure to cross-check and confirm the selectivity and performance of the developed sensor for matrix effect and (G) UV-Spectra of matrix effect, which confirms banana matrix does not play any role in colorimetric signal. Thus, banana matrix has no effect.

	Standard sample	(CaC ₂)	Unknown sample (CaC ₂)			
Sr. No.	Sulfhydryl concentration (ppm)	CaC ₂ Concentration (ppm)	Sr. No.	Sulfhydryl concentration (ppm)	CaC ₂ Concentration (ppm)	
	323 nm			323 nm		
1	0	0				
2	0.05	10				
3	0.174	50				
4	0.25	100				
5	0.55	500	3	0.778	654.0877	
6	1.38	1000				
7	3.55	2000	4 and 1	4.73 and 5.72	2664.78 and 3222.5	
8	6.90	4000	2	7.53	4365.21	

Table S2 Quantification of sulfhydryl concentrations in unknown solutions

To calculate the sulfhydryl concentration in moles/L of unknown sample. The reported molar absorptivity (molar extinction coefficient, which is expressed in units of M⁻¹ cm⁻¹ of TNB in this buffer system at 412nm is 14,150.2 Molar absorptivity, E, is defined as follows:

E = A/bc (1).

where A = absorbance, b = path length in centimeters, c = concentration in moles/liter (M)

Solving for concentration gives the following formula: c = A/b E (2).

For unknown sample (a), applied equation (2); A = 0.294, b = 1cm and E = 14,150 M⁻¹ cm⁻¹. Therefore, $c = 0.294/1(14,150) = 2.07 \times 10^{-5}$ M.

This value represents the concentration of the solution in the spectrophotometric cuvette. To calculate the concentration of the unknown sample, it is necessary to account for dilution factors as follows:

The total volume of the solution is measured as follows

0.85 mL of unknown sample + 0.15 mL of Ellman's Reagent Solution = 1 mL of solution If the concentration of the assay solution is 2.07×10^{-5} M, then 1mL of that solution contains

 $1mL \times 1 L/1000 mL \times (2.07 \times 10^{-5} M) = 2.07 \times 10^{-8} M$

This 2.07×10^{-8} M of sulfhydryl in the assay solution were contributed by the original 0.85 mL sample. Therefore, the concentration of free sulfhydryl in the original unknown sample is

 $2.07 \times 10^{-8} \text{ M}/0.85 \text{ mL} \times 1000 \text{ mL/L} = 2.4 \times 10^{-5} \text{ M}$

Further applied blank correction for the unknown sample to get the final value

 2.94×10^{-5} M (blank) - 2.4×10^{-5} M = 5.88×10^{-6} M

Similarly for unknown sample b, c, and d free sulfhydryl concentration is -7.58×10^{-6} M, 2.25×10^{-6} M, 2.25×10^{-6} M, and 1.27×10^{-5} M respectively.

Finally, to convert M to g/L

 $5.88 \times 10^{-6} \text{ M} \times 396.34 \text{ (molar mass of DTNB)} \times 1000 = 5.72 \text{ g/l}$

As we know, 1g/l=1ppm. So, 5.72 g/l = 5.72 ppm

Thus, unknown sample b, c, and d free sulfhydryl concentration in ppm is 7.53 ppm, 3.6 ppm, and 4.73 ppm, respectively.

Time dependent degradation of colorimetric signal

Fig. S4 Time dependent degradation of color till 5 weeks. Until 5th week there no color change noticed, as a result it is concluded that, presented assay is highly stable.

Fig. S5 (A) No interference effect of banana matrix in the presented assay, (B) UV-Spectra of other sulfates salts for cross check and (C) Colorimetric assay of other sulfate salts (no interference).

Fig. S6 Comparative study and validation of our developed method. (A) Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of sulfur content in standard and unknown (UNK) concentration of CaC_2 and (B) our developed DTNB sensor analysis of sulfur content in standard concentration of CaC_2 . Both methods follows a linear pattern for detecting sulfur content in CaC_2 samples. Thus, our method is precise and validate for detecting CaC_2 in artificially ripened fruit.

CaC		ICP-OES		
CaC_2	Absorbance			conventional
(nnm)	323 nm	412 nm	Color development	analysis of trace
(ppin)	DTNB	TNB		sulfur (ppm)
0 ppm	0.354	0	No	0 ppm
10 ppm	0.352	0	No	2.802 ppm
50 ppm	0.348	0	Yes	5.56 ppm
100 ppm	0.34	0	Yes	13.994 ppm
500 ppm	0.343	0	Yes	23.61 ppm
1000 ppm	0.319	0.058	Yes	32.16 ppm
2000 ppm	0.244	0.189	Yes	38.46 ppm

Table S3 Validation data of developed method compared with ICP-OES