Impact of Thermal Gas Treatment on the Surface Modification of Li-Rich Mn-based Cathode Materials for Li-ion Batteries

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Maximilian Mellin,^a Zhili Liang,^a Hadar Sclar,^b Sandipan Maiti,^b Igor Píš,^c Silvia Nappini,^c Elena Magnano,^{c,d} Federica Bondino,^c Ilargi Napal,^{c,e} Robert Winkler,^a Réne Hausbrand,^a Jan P. Hofmann,^a Lambert Alff,^a Boris Markovsky,^b Doron Aurbach,^b Wolfram Jaegermann,^a and Gennady Cherkashinin.^{a,*}

Table S1 Theoretical parameters used for the Mn L3,2, Co L3,2 and Ni L3,2 edges simulations usingCTM4XAS software.

	Symmetry	10Dq	F _{d-d} (%)	F _{p-d} (%)	G _{p-d} (%)	Dt	Ds	Δ	U _{d-d}	U _{p-d}
		(eV)				(eV)	(eV)	(eV)	(eV)	(eV)
Mn										
Mn ²⁺ ref.75	O _h	1.2	80	80	80	-	-	7	0	0
Mn ³⁺ ref.75	D _{4h}	1.54	65	75	75	0.02	0.06	4	0	0
Mn ⁴⁺ ref.76	O _h	2.5	70	70	70	-	-	2.5	6.5	8.5
Со										
Co ²⁺ ref.77	D_{4h}	-0.75	90	90	90	0	0.04	-	-	-
Co ³⁺ ref.77	O _h	1.8	70	70	70	-	-	-	-	-
Ni										
Ni ²⁺ ref.78	O _h	1.2	80	80	80	-	-	3	0	0

Here, G_{p-d} is the reduction factor (%) of the exchange Coulomb, F_{p-d} and F_{d-d} are direct Coulomb Slater integrals. The Δ is the charge transfer parameter. The Dt, Ds and 10Dq are the crystal field parameters. U_{d-d} and U_{p-d} parameters correspond to 3d-3d and 2p-3d intra-atomic Coulomb interactions.

^{b.} Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.

^{c.} IOM-CNRIstituto Officina dei Materiali, Strada Statale 14, km 163,5 in Area Science Park, 34149 Basovizza, Trieste, Italy.

^{d.}Department of Physics, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa.

^{e.} Università degli Studi di Trieste, Physics Department, P.le Europa 1, 34127 Trieste, Italy.

^{a.} Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287 Darmstadt, Germany.

^{*}Corresponding author: gennady.cherkashinin@tu-darmstadt.de

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Figure S1. Cycling behaviour of electrodes comprising various materials: (a) LiNi_{0.85}Co_{0.15}Mn_{0.05}O₂ (NCM85) untreated and SO₂-gas treated for 5, 20 and 30 min, as indicated, ref. ^{S1}, b) LiNi_{0.9}Co_{0.1}O₂ (NC9010) undoped, Mo-doped, B-doped and Mo-B-doped samples, ref. ^{S2}, (c) HE-NCM untreated, SO₂-treated, NH₃-treated, and double-gas treated, ref. ^{S3}.

Figure S2. a) The Mn 3s photoelectron spectra of the *untreated HE-NCM*: *pristine* (without carbon and PVDF) (i) and *composite cathode* (with carbon and PVDF) (ii). The vertical lines show the binding energies of the main Mn 3s photoelectron peak and the exchange satellite, S_{exc} . The difference between Mn 3s and S_{exc} for the *pristine* and the *composite* cathode is $\Delta E_s \sim 4.5$ eV and 4.6 eV, respectively. b) Mn 2p photoelectron spectra of the *untreated HE-NCM*: *pristine* (black line) and *composite cathode* (red line). c) Mn L edge of the *untreated HE-NCM*: *pristine* (black line) and *composite*, which is a sign of a partial electron yield mode (PEY). The *B/A* ratio is lower for the *HE-NCM composite*, which is a sign of a partial reduction of Mn⁴⁺ ions. d) Mn 2p photoelectron spectra of the *untreated HE-NCM* without carbon and PVDF (red line). e) Mn 2p photoelectron spectra of the *untreated HE-NCM* pristine (black line). The *B/A* ratio is lower for the *HE-NCM composite*, which is a sign of a partial reduction of Mn⁴⁺ ions. d) Mn 2p photoelectron spectra of the *untreated HE-NCM* pristine (black line). The *B/A* ratio is lower for the *HE-NCM composite*, which is a sign of a partial reduction of Mn⁴⁺ ions. d) Mn 2p photoelectron spectra of the *untreated HE-NCM* pristine (black line). The *B/A* ratio is lower for the *HE-NCM composite* cathode (red line). The *untreated HE-NCM* pristine (black line) and treated HE-NCM pristine (black line). The *B/A* ratio is lower for the *HE-NCM* pristine (black line). The *B/A* ratio is lower for the *HE-NCM* pristine (black line). The *B/A* ratio is lower for the *HE-NCM* composite cathode (red line). The *untreated HE-NCM* pristine (black line) and the treated HE-NCM composite cathode (red line). The *untreated HE-NCM* pristine (black line) and the treated HE-NCM composite cathode (red line). The difference photoelectron spectra are shown in green with the vertical arrows pointing the spectral feature *A* different from Mn⁴⁺ state. All th

Figure S3. The Zn 2p photoemission of the HE-NCM double-gas (SO₂ and NH₃) treated composite cathode. The Zn $2p_{3/2}$ spectrum at E_{bin} ~1022.8 eV evidences traces of ZnSO₄ (or ZnCO₃) at the surface of the HE-NCM.

Figure S4. (a) Mn L_{3,2} XANES of KMnO₄ (i, ii) and HE-NCM double-gas NH₃ and SO₂ treated composite cathode material (iii). The *E* spectral feature (i, ii) is characteristic for Mn⁷⁺ and it is strongly decreased in intensity as soon as Mn⁷⁺ state is photon reduced (ii). (b) Mn^{II}(acac)₂ and Mn^{III}(acac)₃ complexes in solution (Ref.^{S4}). (c) Mn L₃ edge of NMC442 (blue) and NMC442-TiO₂ (red) after electrochemical cycling: dotted vertical line indicates the position of the +2 oxidation state (reproduced from Ref.^{S5}). (d) Mn L edge of MnO (Mn²⁺), Mn₂O₃ (Mn³⁺) and Li₂MnO₃ (Mn⁴⁺) shown by colour dashed lines, LiMn₂O₄ (black solid) and Co_xMn_{3-x}O₄ with *x*=1; 1.5; 2. C-Co_x and T-Co_x are cubic and tetragonal spinel, respectively (reproduced from Ref.^{S6}).

Figure S5. Co 3s photoemission and Co 2p X-ray emission spectrum (on the top) of various cobalt oxides adapted from Ref.^{S7}.

Figure S6. (a) Co L_{3,2} XANES of a LiCoPO₄ thin-film cathode material (a, i). Theoretical calculations of the Co L_{3,2} edges for the Co²⁺ with HS spin in O_h coordination geometry with np^6 3d⁶ ground and np^5 3d⁷ final states (a, ii) (see for details Ref.^{S8}). The insert shows the electron configuration of Co²⁺ and Co³⁺ states in O_h symmetry.

Figure S7. The C 1s (a) photoelectron spectra of (i) a LiCoO² thin film, (ii- v) HE-NCM vs. the treatment: (ii) *pristine*, (iii) *untreated composite*, (iv) *treated*, (v) *treated composite*. The green curve above the C 1s photoemission is the difference between the mathematical model and the result of the fitting procedure. A defect state C_v, highlighted with the frame, at E_{bin} ~283.5 eV appears after mixing the HE-NCM active material with conductive carbon and PVDF (ii, iv). The procedure of fitting component peaks to reproduce experimental photoemission spectra utilizes mathematical algorithms to minimize a figure-of-merit as a measure of the closeness of the mathematic model to the experimental data [see description of a common fitting procedure in Ref.^{S9}]. b) The normalized Li 1s photoelectron spectra of HE-NCM vs. the treatment: (i) *pristine*, (ii) *untreated composite*, (iii) *treated*, (iv) *treated composite*. The peak maxima and shoulder are labelled as A_{Li} (E_{bin} =54.2 eV (i, ii) and 54.7 eV (iii, iv)), and B_{Li} (E_{bin} =55.6 eV (iii, iv)).

Figure S8. O K XANES of the as prepared *treated HE-NCM composite*. Li₂O₂, which is expected at ~531 eV [Ref. ^{S10}], is not detected.

Figure S9. The N 1s photoelectron spectrum of the *treated HE-NCM*. The binding energy region of Li_3N is shown by the red rectangular.

References

- S1 F. A. Susai, H. Sclar, S. Maiti, L. Burstein, O. Perkal, J. Grinblat, M. Talianker, S. Ruthstein, C. Erk, P. Hartmann, B. Markovsky and D. Aurbach, *ACS Appl. Energy Mater.*, 2020, **3**, 3609.
- S2 S. Maiti, H. Sclar, Rosy, J, Grinblat, M. Talianker, M. Tkachev, M. Tsubery, X. Wu, M. Noked, B. Markovsky and D. Aurbach, *Energy Storage Mater.*, 2022, **45**, 74.
- S3 F. A. Susai, A. Bano, S. Maiti, J. Grinblat, A. Chakraborty, H. Sclar, T. Kravchuk, A. Kondrakov, M. Tkachev, M. Talianker, D. T. Major, B. Markovsky and D. Aurbach, *J. Mater. Chem. A*, 2023, **11**, 12958.
- S4 M. Kubin, M. Guo, M. Ekimova, M. L. Baker, T. Kroll, E. Källman, J. Kern, V. K. Yachandra, J. Yano, E. T. J. Nibbering, M. Lundberg and P. Wernet, *Inorg. Chem.*, 2018, 57, 5449.
- S5 S. Wolff- Goodrich, F Lin, I. M. Markus, D. Nordlund, H. L. Xin, M. Asta and M. M. Doeff, *Phys. Chem. Chem. Phys.*, 2015, **17**, 21778.

- S6 X. Long, P. Yu, N. Zhang, C. Li, X. Feng, G. Ren, S. Zheng, J. Fu, F. Cheng and X. Liu, *Nanomater*. 2019, **9**, 577.
- S7 V. R. Galakhov, V. V. Karelina, D. G. Kellerman, V. S. Gorshkov, N. A. Ovechkina and M. Neumann, *Phys. Solid State*, 2022, **44**(2), 266.
- S8 G. Cherkashinin, R. Eilhardt, S. Nappini, M. Cococcioni, I. Pís, S. dal Zilio, F. Bondino, N. Marzari, E. Magnano and L. Alff, *ACS Appl. Mater. Interfaces*, 2022, **14**, 543.
- S9 G. H. Major, N. Fairley, P. M. A. Sherwood, M. R. Linford, J. Terry, V. Fernandez and K. Artyushkova, J. Vac. Sci. Technol. A, 2020, **38**(6), 061203.
- S10 R. Qiao, Yi.- D. Chuang, S. Yan and W. Yang, *PLOS ONE*, 2012, 7(11), e49182.