SUPPLEMENTARY INFORMATION

Delving into the Multifunctionality of Sr₂NaMg₂V₃O₁₂ via RE³⁺

Substitution for Dual-mode Temperature Sensing, Latent

Fingerprint Detection, and Security Inks

Amrithakrishnan Bindhu^a, Jawahar Isuhak Naseemabeevi^a, Subodh Ganesanpotti^a*

^aDepartment of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram,

Kerala - 695 581, India

Email: gsubodh@gmail.com, gsubodh@keralauniversity.ac.in

Formula		$Sr_{1.9}Sm_{0.05}Na_{1.05}Mg_2V_3O_{12}$						
Crystal system		Cubic	Cubic					
Space group		Ia 3 d (230, 0	$Ia\overline{3}d$ (230, O_h^{10})					
Cell parameter		a=12.652(1	<i>a</i> =12.652(1) Å					
Reliability factors		$R_{wp} = 5.35\%$	R_{wp} = 5.35%, R_p = 4.07% and GOF= 1.19					
Atom	Site	Х	У	Z	Occupancy	B_{eq} (Å ²)		
Sr ²⁺ /Sm ³⁺	24c	0.375	0.5	0.25	0.667	0.009(5)		
Na^+	24c	0.375	0.5	0.25	0.333	0.009(5)		
Mg^{2+}	16a	0.50	0.5	0	1	0.008(1)		
V^{5+}	24d	0.625	0.50	0.25	1	0.005(8)		
O ²⁻	96h	0.039(8)	0.048(9)	0.653(6)	1	0.009(6)		

 $Table \ S1 \ Rietveld \ refinement \ and \ crystallographic \ parameters \ of \ Sr_{1.9} Sm_{0.05} Na_{1.05} Mg_2 V_3 O_{12}.$

Table S2 Rietveld refinement and crystallographic parameters of $Sr_{1.76}Sm_{0.12}Na_{1.12}Mg_2V_3O_{12}$.

	Formula		$Sr_{1.76}Sm_{0.12}Na_{1.12}Mg_2V_3O_{12}$					
	Crystal system		Cubic					
	Space group		$Ia\overline{3}d~(230, O_h^{10})$					
	Cell parameter		<i>a</i> =12.644(8) Å					
Reliability factors		actors	R_{wp} = 5.28%, R_p = 3.95 % and GOF= 1.25					
	Atom	Site	Х	у	Z	Occupancy	B_{eq} (Å ²)	
	${\rm Sr}^{2+}/{\rm Sm}^{3+}$	24c	0.375	0.5	0.25	0.667	0.009(8)	
	Na^+	24c	0.375	0.5	0.25	0.333	0.009(8)	
	Mg^{2+}	16a	0.50	0.5	0	1	0.007(9)	
	V^{5+}	24d	0.625	0.50	0.25	1	0.006(1)	
	O ²⁻	96h	0.039(8)	0.045(9)	0.652(3)	1	0.009(8)	

Band/ type	of Irreducible	$\Omega (\mathrm{cm}^{-1})$	γ (cm ⁻¹)
motion	representation		
T of Sr/NaO ₈	F_{2g}	105	8
T of VO ₄	E_{g}	146	13
R of VO ₄	Eg	215	5
R of VO ₄	A_{1g}	256	24
υ_2	A_{1g}	332	15
υ4	F_{2g}	366	30
υ_2	E_{g}	447	22
υ_3	F _{2g}	758	46
υ_1	A_{1g}	834	25
υ_4	Eg	891	7
υ_1	E_{g}	912	21
υ_3	F_{2g}	1229	29
υ_3	E_{g}	1366	31
υ_3	F_{2g}	1451	27
υ_3	F_{2g}	1506	87

Table S3 Raman band assignment of Sm³⁺ activated SNMV system.

Sm ³⁺ concentration	CIE coordinates
0.01	(0.202, 0.286)
0.03	(0.218, 0.291)
0.05	(0.234, 0.298)
0.07	(0.238, 0.299)
0.10	(0.248, 0.303)
0.12	(0.265, 0.315)

Table S4. The variation of CIE coordinates with Sm^{3+} concentration.

Table S5 List of thermographic phosphors reported for thermochromic luminescence.

Compounds	Temperature range (K)	CIE shift	Reference
Ba ₃ (VO ₄) ₂ : Sm ³⁺	303-463	(0.310, 0.412) to (0.375, 0.338)	1
		Green to White	
$LiCa_3ZnV_3O_{12}:Sm^{3+}$	303- 463	(0.364, 0.388) to (0.569, 0.391)	2
		White to red	
$Na_{3}Sc_{2}P_{3}O_{12}:Eu^{2+}/Mn^{2+}$	293 -473	(0.468, 0.308) to (0.315, 0.231)	3
		Red to purple	
$BaGd_2O_4: Bi^{3+}/Sm^{3+}$	293-473	(0.2584, 0.1765) to (0.3373, 0.2581)	4
		Lavender to pink	
LaNbO ₄ : Bi ³⁺ /Eu ³⁺	303-483	(0.3695, 0.2707) to (0.5822, 0.3418)	5
LaNbO ₄ : Bi ³⁺ /Tb ³⁺	303-483	(0.2197, 0.2427) to (0.3151, 0.4526)	5

Lu ₃ Al ₅ O ₁₂ : Ce ³⁺ /Mn ⁴⁺	298-353	(0.4525, 0.4673) to (0.3665, 0.5247)	6
		Red to green	
$Ca_2NaMg_2V_3O_{12}$: Eu^{3+}	303-503	Green to reddish orange	7
$Ca_2NaMg_2V_3O_{12}: Sm^{3+}$	303-503	Green to orange	7
$Ca_2NaZn_2V_3O_{12}$: Eu ³⁺	303-483	(0.421, 0.396) to (0.629, 0.350)	8
		Yellowish red to pure red	
$Sr_2NaMg_2V_3O_{12}$: Eu^{3+}	300-500	(0.353, 0.335) to (0.611, 0.360)	9
		White to deep red	
Sr ₂ NaMg ₂ V ₃ O ₁₂ : Sm ³⁺	300-500	(0.263, 0.352) (0.504, 0.408)	This work
		Cyan to orange-red	

Table S6 Rietveld refinement and crystallographic parameters of $Sr_{1.7}Eu_{0.15}Na_{1.15}Mg_2V_3O_{12}$.

Formula	Formula $Sr_{1.7}Eu_{0.15}Na_{1.15}Mg_2V_3O_{12}$							
Crystal system		Cubic	Cubic					
Space group		Ia 3 d (230, 0	$Ia\overline{3}d(230, O_{h}^{10})$					
Cell parameter		a=12.624(5	<i>a</i> =12.624(5) Å					
Reliability factors		$R_{wp} = 3.07\%$	R_{wp} = 3.07%, R_p = 2.37% and GOF= 1.38					
Atom	Site	Х	У	Z	Occupancy	B_{eq} (Å ²)		
Sr ²⁺ /Eu ³⁺	24c	0.375	0.5	0.25	0.667	0.009(5)		
Na^+	24c	0.375	0.5	0.25	0.333	0.009(5)		
Mg^{2+}	16a	0.50	0.50	0	1	0.008(1)		
V^{5+}	24d	0.625	0.50	0.25	1	0.005(8)		
O ²⁻	96h	0.039(7)	0.049(2)	0.653(7)	1	0.009(6)		

Figure S1: The shift of Bragg peak with Sm^{3+} concentration.

Figure S2. The photoluminescence emission and excitation spectra of SNMV phosphor.

Figure S3. The luminescence dependent decay time with Sm³⁺ concentration.

Figure S4 Plot of ln (I/x) vs. ln x of SNMV: Sm³⁺ at various concentrations.

Figure S5 Temperature-dependent Raman spectra of SNMV: 0.05 Sm³⁺ phosphor.

Figure S6. The photoluminescence emission and excitation spectra of SNMV: 0.15 Eu^{3+} phosphor.

Figure S7 Rietveld refinement pattern of SNMV: 0.15 Eu³⁺.

Figure S8 Schematic illustration of latent fingerprint detection.

Figure S9 FE-SEM images of (a) SNMV: 0.15 Eu^{3+} , (b) SNMV, and (c) SNMV: 0.05 Sm^{3+} phosphors.

Figure S10 Grain size distribution in (a) SNMV: 0.15 Eu³⁺, (b) SNMV, and (c) SNMV: 0.05 Sm³⁺.

Figure S11 The digital photographs of LFPs illuminated on various substrates- (a1-a3) highlighter, (b1-b3) CD and (c1-c3) under UV radiation of 365 nm using (1) SNMV: Eu³⁺, (2) SNMV, (3) SNMV: Sm³⁺ phosphors and (4) under daylight respectively.

Figure S12 Visualization of smudged LFPs based on (a) SNMV: Eu³⁺, (b) SNMV, (c) SNMV: Sm³⁺ based LFPs on the glass slide under UV radiation of 365 nm and (d) under daylight.

References

- (1) Du, P.; Hua, Y.; Yu, J. S. Energy Transfer from VO₄³⁻ Group to Sm³⁺ Ions in Ba₃(VO₄)₂:3xSm³⁺ Microparticles: A Bifunctional Platform for Simultaneous Optical Thermometer and Safety Sign. *Chemical Engineering Journal* 2018, 352, 352–359. https://doi.org/10.1016/J.CEJ.2018.07.019
- Guo, H.; Devakumar, B.; Vijayakumar, R.; Du, P.; Huang, X. A Novel Sm³⁺ Singly Doped LiCa₃ZnV₃O₁₂ Phosphor: A Potential Luminescent Material for Multifunctional Applications. *RSC Adv* 2018, *8* (58), 33403–33413. https://doi.org/10.1039/C8RA07329E
- (3) Zhang, X.; Zhu, Z.; Guo, Z.; Sun, Z.; Chen, Y. A Ratiometric Optical Thermometer with High Sensitivity and Superior Signal Discriminability Based on Na₃Sc₂P₃O₁₂: Eu²⁺, Mn²⁺

Thermochromic Phosphor. *Chemical Engineering Journal* **2019**, *356*, 413–422. https://doi.org/10.1016/J.CEJ.2018.09.075

- (4) Fu, J.; Zhou, L.; Chen, Y.; Lin, J.; Ye, R.; Deng, D.; Chen, L.; Xu, S. Dual-Mode Optical Thermometry Based on Bi³⁺/Sm³⁺ Co-Activated BaGd₂O₄ Phosphor with Tunable Sensitivity. *J Alloys Compd* 2022, 897, 163034. https://doi.org/10.1016/J.JALLCOM.2021.163034
- (5) Xue, J.; Yu, Z.; Noh, H. M.; Lee, B. R.; Choi, B. C.; Park, S. H.; Jeong, J. H.; Du, P.; Song, M. Designing Multi-Mode Optical Thermometers via the Thermochromic LaNbO₄:Bi³⁺/Ln³⁺ (Ln = Eu, Tb, Dy, Sm) Phosphors. *Chemical Engineering Journal* 2021, *415*, 128977. https://doi.org/10.1016/J.CEJ.2021.128977
- (6) Chen, Y.; He, J.; Zhang, X.; Rong, M.; Xia, Z.; Wang, J.; Liu, Z. Q. Dual-Mode Optical Thermometry Design in Lu₃Al₅O₁₂:Ce³⁺/Mn⁴⁺ Phosphor. *Inorg Chem* 2020, *59* (2), 1383– 1392. https://doi.org/10.1021/ACS.INORGCHEM.9B03107
- Zhou, H.; Guo, N.; Lü, X.; Ding, Y.; Wang, L.; Ouyang, R.; Shao, B. Ratiometric and Colorimetric Fluorescence Temperature Sensing Properties of Trivalent Europium or Samarium Doped Self-Activated Vanadate Dual Emitting Phosphors. *J Lumin* 2020, *217*, 116758. https://doi.org/10.1016/J.JLUMIN.2019.116758
- (8) Du, P.; Yu, J. S. Self-Activated Multicolor Emissions in Ca₂NaZn₂(VO₄)₃:Eu³⁺ Phosphors for Simultaneous Warm White Light-Emitting Diodes and Safety Sign. *Dyes and Pigments* 2017, 147, 16–23. https://doi.org/10.1016/J.DYEPIG.2017.07.065
- (9) Bindhu, A.; Naseemabeevi, J. I.; Ganesanpotti, S. Vibrationally Induced Photophysical Response of Sr₂NaMg₂V₃O₁₂:Eu³⁺ for Dual-Mode Temperature Sensing and Safety Signs. *Adv Photonics Res* 2022, *3* (6), 2100159. https://doi.org/10.1002/ADPR.202100159