Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Nanoliposome Protecting Antimicrobial Peptides by a membrane-fused incorporation against the infection of wound

Hao Xue^{a#}, Jiaying Li^{b#}, Liwei Zhang^a, Xiaolu Song^{a*}, Hui Shi^c, Yonghai Feng^a, Shuai Hou^a, Zengkai Wang^a, Taofeng Zhu^{b*}, Lei Liu^{a*}

- a. Institute for Advanced Materials, Jiangsu University.
- b. Department of Pulmonary and Critical Care Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, China
- c. School of Medicine, Jiangsu University.
- # These authors contributed equally.

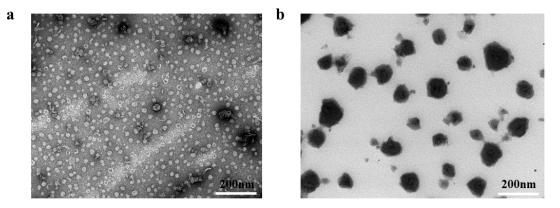
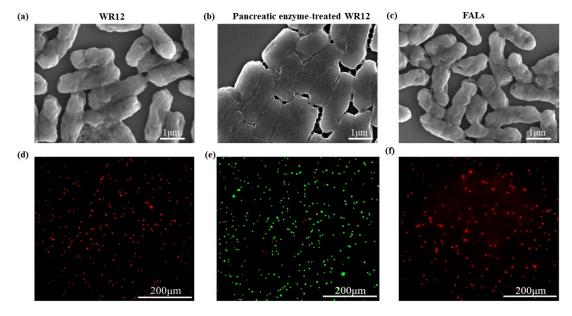



Fig. S1 (a) Transmission electron microscopy (TEM) of liposomes and (b) TEM of FALs

Fig. S2 (a) The colony image of the WR12 mixed with *E. coli* for 4 h. (b) The colony image of the pancreatic enzyme-treated WR12 mixed with *E. coli* for 4 h. (c) The colony image of the FALs mixed with *E. coli* for 4 h. (d) The fluorescence image of the WR12 mixed with *E. coli* for 4 h. (e) The fluorescence image of pancreatic enzyme-treated WR12 mixed with *E. coli* for 4 h. (f) The fluorescence image of the FALs mixed with *E. coli* for 4 h.

Table S1 Concentration and loading efficiency of FWR32 before and after ultrafiltration of FALs at four concentrations

	1	2	3	4
Initial concentration/ μg/mL	24	25.6	64	76.8
Final concentration/ µg/mL	14.50	15.50	42.35	44.08
Load efficiency	60.4%	60.5%	65.6%	57.0%