"Supporting Information"

Design and synthesis of hydrophobic mixed organogel with complementary hydrogenbond donor-acceptor sites: removal of heavy metal ions Hg⁺², Cd⁺² and Pb⁺² from aqueous solution

Reena Kyarikwal,^a Ritika Munjal,^a Probal Nag,^b Sivaranjana Reddy Vennapusa^b and Suman Mukhopadhyay^a*

^aDepartment of Chemistry, School of basic science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, 453552, India

^bSchool of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, India

*Email: <u>suman@iiti.ac.in</u>

Table of Contents

Fig. S1: ESI-MS data of gelator component GE.

Fig. S2: ¹H NMR data of gelator component **GE**.

Fig. S3: ¹³C NMR data of gelator component **GE**.

Fig. S4: FTIR data of gelator enhancer molecule GE.

Fig. S5: Angular sweep experiment of organogel **G8GE** with (a) 0.01: 0.01 mmol (b) 0.02: 0.02 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

Fig. S6: Angular sweep experiment of organogel **G8GE** with (a) 0.03: 0.03 mmol (b) 0.04: 0.04 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

Fig. S7: Angular sweep experiment of organogel G8GE with (a) 0.07: 0.07 mmol (b) 0.1: 0.1 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

 Table S1: Concentration dependent rheological study of organogel G8GE.

Fig. S8: UV-Vis spectrum of (a) GE and (c) G8GE.

Fig. S9: Fluorescence spectrum of (a) G8, GE, G8GE (b) 1 mM solution of G8, GE and G8GE under UV chamber.

Fig. S10: (a) Fluorescence study of **G8GE** gelator component with different polar protic and polar aprotic solvents (b) 0.3 mM solution of **G8GE** component in different solvents under UV chamber.

Fig. S11: Fluorescence study of **G8GE** organogel and metallogels formed by (a) mixing method and (b) adsorption method.

Fig. S12: Fluorescence study of (a) 1 mM solution of **G8GE** (in DMSO) and $HgCl_2$ (in H_2O) and (b) 1 mM solution of **G8GE** (in DMSO: H_2O) and $HgCl_2$ (in DMSO: H_2O).

Fig. S13: FE-SEM images of (a) **M1G8GECl₂Ads** (b) **M1G8GE(OAc)₂Ads** (c) **M1G8GESO₄Ads** (d) **M2G8GECl₂Ads** (e) **M2G8GE(OAc)₂Ads** (f) **M2G8GESO₄Ads** (g) **M3G8GECl₂Ads** and (h) **M3G8GE(OAc)₂Ads** formed by adsorption method.

Fig. S14: EDX and Mapping analysis of **M1G8GECl₂** showing the presence of C, N, O, Hg and Cl inside gel matrix.

Fig. S15: EDX and Mapping analysis of **M1G8GE(OAc)**₂ showing the presence of C, N, O and Hg inside gel matrix.

Fig. S16: EDX and Mapping analysis of **M1G8GESO**₄ showing the presence of C, N, O, Hg and S inside gel matrix.

Fig. S17: EDX and Mapping analysis of **M2G8GECl₂** showing the presence of C, N, O, Cd and Cl inside gel matrix.

Fig. S18: EDX and Mapping analysis of **M2G8GE(OAc)**₂ showing the presence of C, N, O and Cd inside gel matrix.

Fig. S19: EDX and Mapping analysis of **M2G8GESO**₄ showing the presence of C, N, O, Cd and S inside gel matrix.

Fig. S20: EDX and Mapping analysis of **M3G8GECl**₂ showing the presence of C, N, O, Pb and Cl inside gel matrix.

Fig. S21: EDX and Mapping analysis of **M3G8GE(OAc)**₂ showing the presence of C, N, O and Pb inside gel matrix.

Fig. S22: (a) Frequency sweep experiment of organogel **G8GE** at 1:1 molar ratio (0.03: 0.03 mmol) (b) Frequency sweep experiment of organogel **G8GE** at 3: 2 molar ratio (0.03: 0.02 mmol).

Fig. S23: (a) Angular sweep experiment of metallogel $M1G8GECI_2$ (b) Frequency sweep experiment of metallogel $M1G8GECI_2$.

Fig. S24: (a) Angular sweep experiment of metallogel **M1G8GE(OAc)**₂ (b) Frequency sweep experiment of metallogel **M1G8GE(OAc)**₂.

Fig. S25: (a) Angular sweep experiment of metallogel **M1G8GESO**₄ (b) Frequency sweep experiment of metallogel **M1G8GESO**₄.

Fig. S26: (a) Angular sweep experiment of metallogel M2G8GECl₂ (b) Frequency sweep experiment of metallogel M2G8GECl₂.

Fig. S27: (a) Angular sweep experiment of metallogel M3G8GECl₂ (b) Frequency sweep experiment of metallogel M3G8GECl₂.

Fig. S28: (a) Angular sweep experiment of metallogel **M3G8GESO**₄ (b) Frequency sweep experiment of metallogel **M3G8GESO**₄.

Table S2: Storage modulus and loss modulus of metallogels formed by mixing method.

Fig. S29: (a) Angular sweep experiment of metallogel M1G8GECl₂Ads (b) Frequency sweep experiment of metallogel M1G8GECl₂Ads.

Fig. S30: (a) Angular sweep experiment of metallogel **M1G8GE(OAc)₂Ads** (b) Frequency sweep experiment of metallogel **M1G8GE(OAc)₂Ads**.

Fig. S31: (a) Angular sweep experiment of metallogel **M1G8GESO**₄**Ads** (b) Frequency sweep experiment of metallogel **M1G8GESO**₄**Ads**.

Fig. S32: (a) Angular sweep experiment of metallogel M2G8GECl₂Ads (b) Frequency sweep experiment of metallogel M2G8GECl₂Ads.

Fig. S33: (a) Angular sweep experiment of metallogel **M2G8GE(OAc)₂Ads** (b) Frequency sweep experiment of metallogel **M2G8GE(OAc)₂Ads**.

Fig. S34: (a) Angular sweep experiment of metallogel **M2G8GESO**₄**Ads** (b) Frequency sweep experiment of metallogel **M2G8GESO**₄**Ads**.

Fig. S35: (a) Angular sweep experiment of metallogel M3G8GECI₂Ads (b) Frequency sweep experiment of metallogel M3G8GECI₂Ads.

Fig. S36: (a) Angular sweep experiment of metallogel **M3G8GE(OAc)₂Ads** (b) Frequency sweep experiment of metallogel **M3G8GE(OAc)₂Ads**.

Table S3: Storage modulus and loss modulus of metallogels formed by adsorption method.

Fig. S37: DFT structure showing (a, b) Planarity of **G8** (c, d) Tilted structure of **GE** and (e, f) Less tilted structure of **G8GE** as compared to **GE** after interaction with **G8**.

Fig. S38: HOMO-LUMO energy orbitals of (a) G8 and (b) GE.

Fig. S39: FTIR data analysis of (a) **M1G8GECl₂** (b) **M1G8GE(OAc)₂** (c) **M1G8GESO**₄ (d) **M2G8GECl₂** (e) precipitate of **M2G8GE(OAc)₂** (f) precipitate of **M2G8GESO**₄ (g) **M3G8GECl₂** (h) **M3G8GE(OAc)₂**.

Fig. S40: PXRD data of metallogels (a) **M1G8GECl₂** (b) **M1G8GE(OAc)₂** (c) **M1G8GESO**₄ (d) **M2G8GECl₂** (e) precipitate of **M2G8GE(OAc)₂** (f) precipitate of **M2G8GESO**₄ (g) **M3G8GECl₂** (h) **M3G8GE(OAc)₂**.

Fig. S41: PXRD data of metallogels (a) M1G8GECl₂Ads (b) M1G8GE(OAc)₂ Ads (c) M2G8GECl₂ Ads (d) M2G8GE(OAc)₂ Ads (e) M2G8GESO₄ Ads (f) M3G8GECl₂ Ads.

Table S4: Optimization of heavy metal removal reaction by xerogel of organogel **G8GE**, analysed by ICP-AES.

Table S5: ICP-AES analysis of study of adsorption property of organogel G8GE.

Table S6: Adsorption capacity of various gel-based adsorbent.

Fig. S42: BET analysis data of (a) Xerogel **G8GE** before $Hg(OAc)_2$ adsorption (b) After $Hg(OAc)_2$ adsorption and (c) after $Hg(OAc)_2$ removal from xerogel **G8GE** or recovery of xerogel **G8GE**.

Fig. S43: XPS analysis of xerogel **G8GE** showing (a) C1s spectrum (b) N1s spectrum and (c) O1s spectrum.

Fig. S44: XPS analysis of xerogel **mtG8GE** showing (a) C1s spectrum (b) N1s spectrum and (c) O1s spectrum.

Fig. S45: XPS analysis of xerogel **mrG8GE** showing (a) C1s spectrum (b) N1s spectrum and (c) O1s spectrum and (d) Hg 4f spectrum.

 Table S7: XPS peaks position of various groups for G8GE, mtG8GE and recovered mrG8GE.

Fig. S46: FE-SEM images of (a) **M1G8GECl₂** gel by mixing (b) **M1G8GECl₂Ads** by adsorption (c) **M1G8GECl₂Ads** when **G8GE** inserted inside the aqueous solution of HgCl₂.

Table S8: Recyclability of xerogel **G8GE** for heavy metal separation.

 Table S9:
 Water remediation at different pH by xerogel G8GE.

Fig. S47: Time oscillation sweep experiment of organogel **G8GE** at (a) 0.02: 0.02 mmol (b) 0.03: 0.03 mmol and (c) 0.04: 0.04 mmol.

Fig. S48: Time oscillation sweep experiment of metallogel M3G8GECl₂.

Fig. S49: Time oscillation sweep experiment of metallogel M2G8GECl₂Ads.

Fig. S50: Time oscillation sweep experiment of metallogel (a) M2G8GE(OAc)₂Ads and (b) M2G8GESO₄Ads.

Fig. S51: Time oscillation sweep experiment of metallogel (a) M3G8GECl₂Ads and (b) M2G8GE(OAc)₂Ads.

Table S10. Intermolecular H-bond binding energies of individual sites along with the associated bond lengths of structure **G8GE**.

Table S11. Cartesian coordinates of GE.Table S12. Cartesian coordinates of G8.Table S13. Cartesian coordinates of 2GE-2G8 (G8GE).

Fig. S1: ESI-MS data of gelator component GE.

Fig. S2: ¹H NMR data of gelator component **GE**.

Fig. S3: ¹³C NMR data of gelator component GE.

Fig. S4: FTIR data of gelator enhancer molecule GE.

Fig. S5: Angular sweep experiment of organogel **G8GE** with (a) 0.01: 0.01 mmol (b) 0.02: 0.02 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

Fig. S6: Angular sweep experiment of organogel **G8GE** with (a) 0.03: 0.03 mmol (b) 0.04: 0.04 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

Fig. S7: Angular sweep experiment of organogel **G8GE** with (a) 0.07: 0.07 mmol (b) 0.1: 0.1 mmol in 1:1 ratio of 2 mL DMSO: H_2O mixture.

S. No.	mmol of G8	mmol of GE	Ratio of G8 and GE	Observation in 1 mL DMSO: 1 mL H ₂ O	Value of G'	Value of crossover point	Non- deformation range
1	0.01	0.01	1:1	Gel	95 Pa	68 strain %	0.01- 4.85 strain %
2	0.02	0.02	1:1	Gel	392 Pa	26 strain %	0.01- 2.16 strain %
3	0.03	0.03	1:1	Strong Gel	3517 Pa	6 strain %	0.01- 1.01 strain %
4	0.04	0.04	1:1	Strong Gel	1456 Pa	14 strain %	0.01- 0.47 strain %
5	0.07	0.07	1:1	Gel	922 Pa	47 strain %	0.01- 0.22 strain %
6	0.1	0.1	1:1	Gel	144 Pa	46 strain %	0.01- 0.15 strain %
7	0.03	0.02	3:2	Strong Gel	1593 Pa	25 strain %	0.01- 2.16 strain %

Table S1: Concentration dependent rheological study of organogel G8GE.

Fig. S8: UV-Vis spectrum of (a) GE and (c) G8GE.

Fig. S9: Fluorescence spectrum of (a) G8, GE, G8GE (b) 1 mM solution of G8, GE and G8GE under UV chamber.

Fig. S10: (a) Fluorescence study of **G8GE** gelator component with different polar protic and polar aprotic solvents (b) 0.3 mM solution of **G8GE** component in different solvents under UV chamber.

Fig. S11: Fluorescence study of **G8GE** organogel and metallogels formed by (a) mixing method and (b) adsorption method.

Fig. S12: Fluorescence study of (a) 1 mM solution of **G8GE** (in DMSO) and $HgCl_2$ (in H_2O) and (b) 1 mM solution of **G8GE** (in DMSO: H_2O) and $HgCl_2$ (in DMSO: H_2O).

Fig. S13: FE-SEM images of (a) **M1G8GECl₂Ads** (b) **M1G8GE(OAc)₂Ads** (c) **M1G8GESO₄Ads** (d) **M2G8GECl₂Ads** (e) **M2G8GE(OAc)₂Ads** (f) **M2G8GESO₄Ads** (g) **M3G8GECl₂Ads** and (h) **M3G8GE(OAc)₂Ads** formed by adsorption method.

Fig. S14: EDX and Mapping analysis of **M1G8GECl₂** showing the presence of C, N, O, Hg and Cl inside gel matrix.

Fig. S15: EDX and Mapping analysis of **M1G8GE(OAc)**₂ showing the presence of C, N, O and Hg inside gel matrix.

Fig. S16: EDX and Mapping analysis of **M1G8GESO**₄ showing the presence of C, N, O, Hg and S inside gel matrix.

Fig. S17: EDX and Mapping analysis of **M2G8GECl**₂ showing the presence of C, N, O, Cd and Cl inside gel matrix.

Fig. S18: EDX and Mapping analysis of **M2G8GE(OAc)**₂ showing the presence of C, N, O and Cd inside gel matrix.

Fig. S19: EDX and Mapping analysis of **M2G8GESO**₄ showing the presence of C, N, O, Cd and S inside gel matrix.

Fig. S20: EDX and Mapping analysis of **M3G8GECl₂** showing the presence of C, N, O, Pb and Cl inside gel matrix.

Fig. S21: EDX and Mapping analysis of **M3G8GE(OAc)**₂ showing the presence of C, N, O and Pb inside gel matrix.

Fig. S22: (a) Frequency sweep experiment of organogel **G8GE** at 1:1 molar ratio (0.03: 0.03 mmol) (b) Frequency sweep experiment of organogel **G8GE** at 3: 2 molar ratio (0.03: 0.02 mmol).

Fig. S23: (a) Angular sweep experiment of metallogel $M1G8GECI_2$ (b) Frequency sweep experiment of metallogel $M1G8GECI_2$.

Fig. S24: (a) Angular sweep experiment of metallogel **M1G8GE(OAc)**₂ (b) Frequency sweep experiment of metallogel **M1G8GE(OAc)**₂.

Fig. S25: (a) Angular sweep experiment of metallogel **M1G8GESO**₄ (b) Frequency sweep experiment of metallogel **M1G8GESO**₄.

Fig. S26: (a) Angular sweep experiment of metallogel $M2G8GECl_2$ (b) Frequency sweep experiment of metallogel $M2G8GECl_2$.

Fig. S27: (a) Angular sweep experiment of metallogel **M3G8GECl**₂ (b) Frequency sweep experiment of metallogel **M3G8GECl**₂.

Fig. S28: (a) Angular sweep experiment of metallogel **M3G8GESO**₄ (b) Frequency sweep experiment of metallogel **M3G8GESO**₄.

Metallogel	Storage Modulus (G')	Loss Modulus (G")
M1G8GECl ₂	1976 Pa	247 Pa
M1G8GE(OAc) ₂	189 Pa	27 Pa
M1G8GESO ₄	4838 Pa	792 Pa
M2G8GECl ₂	176 Pa	44 Pa
M2G8GE(OAc) ₂	Gelatinous Solution	Gelatinous Solution
M2G8GESO ₄	Gelatinous Solution	Gelatinous Solution
M3G8GECl ₂	140 Pa	26 Pa
M3G8GE(OAc) ₂	2646 Pa	338 Pa

Table S2: Storage modulus and loss modulus of metallogels formed by mixing method.

Fig. S29: (a) Angular sweep experiment of metallogel M1G8GECl₂Ads (b) Frequency sweep experiment of metallogel M1G8GECl₂Ads.

Fig. S30: (a) Angular sweep experiment of metallogel **M1G8GE(OAc)₂Ads** (b) Frequency sweep experiment of metallogel **M1G8GE(OAc)₂Ads**.

Fig. S31: (a) Angular sweep experiment of metallogel **M1G8GESO**₄**Ads** (b) Frequency sweep experiment of metallogel **M1G8GESO**₄**Ads**.

Fig. S32: (a) Angular sweep experiment of metallogel M2G8GECl₂Ads (b) Frequency sweep experiment of metallogel M2G8GECl₂Ads.

Fig. S33: (a) Angular sweep experiment of metallogel M2G8GE(OAc)₂Ads (b) Frequency sweep experiment of metallogel M2G8GE(OAc)₂Ads.

Fig. S34: (a) Angular sweep experiment of metallogel **M2G8GESO**₄**Ads** (b) Frequency sweep experiment of metallogel **M2G8GESO**₄**Ads**.

Fig. S35: (a) Angular sweep experiment of metallogel M3G8GECI₂Ads (b) Frequency sweep experiment of metallogel M3G8GECI₂Ads.

Fig. S36: (a) Angular sweep experiment of metallogel **M3G8GE(OAc)₂Ads** (b) Frequency sweep experiment of metallogel **M3G8GE(OAc)₂Ads**.

Metallogel	Storage Modulus (G')	Loss Modulus (G")
M1G8GECl ₂ Ads	11730 Pa	1943 Pa
M1G8GE(OAc) ₂ Ads	3055 Pa	559 Pa
M1G8GESO₄Ads	10872 Pa	1803 Pa
M2G8GECl ₂ Ads	11830 Pa	1855 Pa
M2G8GE(OAc) ₂ Ads	13815 Pa	2291 Pa
M2G8GESO₄Ads	13635 Pa	2266 Pa
M3G8GECl ₂ Ads	10747 Pa	1688 Pa
M3G8GE(OAc) ₂ Ads	13119 Pa	2179 Pa

Table S3: Storage modulus and loss modulus of metallogels formed by adsorption method.

Fig. S37: DFT structure showing (a, b) Planarity of **G8** (c, d) Tilted structure of **GE** and (e, f) Less tilted structure of **G8GE** as compared to **GE** after interaction with **G8**.

Fig. S38: HOMO-LUMO energy orbitals of (a) G8 and (b) GE.

Fig. 39: FTIR data analysis of (a) **M1G8GECl**₂ (b) **M1G8GE(OAc)**₂ (c) **M1G8GESO**₄ (d) **M2G8GECl**₂ (e) precipitate of **M2G8GE(OAc)**₂ (f) precipitate of **M2G8GESO**₄ (g) **M3G8GECl**₂ (h) **M3G8GE(OAc)**₂.

Fig. S40: PXRD data of metallogels (a) **M1G8GECl₂** (b) **M1G8GE(OAc)₂** (c) **M1G8GESO₄** (d) **M2G8GECl₂** (e) precipitate of **M2G8GE(OAc)₂** (f) precipitate of **M2G8GESO₄** (g) **M3G8GECl₂** (h) **M3G8GE(OAc)₂**.

Fig. S41: PXRD data of metallogels (a) M1G8GECl₂Ads (b) M1G8GE(OAc)₂ Ads (c) M2G8GECl₂ Ads (d) M2G8GE(OAc)₂ Ads (e) M2G8GESO₄ Ads (f) M3G8GECl₂ Ads.

Table S4: Optimization of heavy metal removal reaction by xerogel of organogel **G8GE**, analysed by ICP-AES.

S.No.	Volume of solvent (H ₂ O) used	Metal salt and concentration used	Amount of xerogel used	Time for removal operation (hour)	Removal %
1			10 mg	3	57.45
2				6	60.48
3	20 mL water	Hg(OAc) ₂ , 1 mM	20 mg	3	72.52
4			_09	6	80.12
5			40 mg	3	90.56
6			To mg	6	99.24

Heavy metal salt	Concentration in ppm before treatment in 20 mL water	Concentration in ppm after treatment by xerogel G8GE (ppm)	Adsorption capacity (q) in (mg/g)	% of heavy metal separation from water
HgCl ₂	271 ppm (1 mM)	118.517	76.24	56.27 %
Hg(CH ₃ COO) ₂	318 ppm (1 mM)	2.42	157.79	99. 24 %
HgSO ₄	296 ppm (1 mM)	0.289	147.81	99.90 %
CdCl ₂	201 ppm (1 mM)	96.818	52.09	51.83 %
Cd(CH ₃ COO) ₂	266 ppm (1 mM)	3.501	131.25	98.68 %
CdSO ₄	769 ppm (1 mM)	119.437	284.93	84.47%
PbCl ₂	278 ppm (1 mM)	112.033	83	59.70 %
Pb(CH ₃ COO) ₂	443 ppm (1 mM)	0.432	221.02	99.90 %

 Table S5: ICP-AES analysis of study of adsorption property of organogel G8GE.

Table S6: Adsorption capacity of various gel-based adsorbent.

S. No.	Adsorbent	Adsorbate	Adsorption capacity (q)	References
1	Bi-component supramolecular gel (RQ)	Hg ²⁺	59 mg/g	Ref. 1
2	Alginate cryogel of sweet lime- derived activated carbon (SLACC)	Cr ⁶⁺ , Cd ²⁺ , Pb ²⁺ , Hg ²⁺ and As ³⁺	3.71, 4.22, 20.04, 4.37 and 7.31 mg/g	Ref. 2
3	Xerogel of BTG organogel	Cu ²⁺ and Hg ²⁺	99.02 % and 99.46 % (1 × 10 ⁻⁵ M metal salt by 1 mg of xerogel)	Ref. 3
4	G-L organogel	Pb ²⁺ and Hg ²⁺	85.63 % and 99.95 % (For Pb ²⁺ it is from 301.5 mg/L to 43.34 mg/L and for Hg ²⁺ , it is from 24.12 to 0.011 mg/L) with xerogel 1 wt. %in 2mL	Ref. 4
5	Xerogel of G8GE organogel	Chloride, acetate and sulphate salt of Hg ²⁺ and Cd ²⁺ , Chloride and acetate of Pb ²⁺	76.24, 157.79, 147.81, 52.09, 131.25, 284.93, 83 and 221.02 respectively.	This work

Fig. S42: BET analysis data of (a) Xerogel **G8GE** before Hg(OAc)₂ adsorption (b) After Hg(OAc)₂ adsorption and (c) after Hg(OAc)₂ removal from xerogel **G8GE** or recovery of xerogel **G8GE**.

Fig. S44: XPS analysis of xerogel **mtG8GE** showing (a) C1s spectrum (b) N1s spectrum and (c) O1s spectrum.

Fig. S45: XPS analysis of xerogel **mrG8GE** showing (a) C1s spectrum (b) N1s spectrum and (c) O1s spectrum and (d) Hg 4f spectrum.

Groups or Element present	Xerogel G8GE Binding Energy (eV)	mtG8GE Binding Energy (eV)	mrG8GE Binding Energy (eV)
-СООН/ С=О	288.9	288.2	288.8
N-C=N	287.9	287.6	288.0
C-N/ C-O	285.2	285.2	285.9
C=C/ C-C	284.4	284.4	284.4
-NH	402.0	401.9	401.9
C-NH-C	400.6	400.4	400.6
-C=N	399.8	399.7	399.8
-NH2	398.8	398.6	398.7
-соон	532.9	532.9	532.7
C=0	531.5	532.2	531.5
С-ОН	530.9	531.1	530.9
Hg ²⁺ (Hg 4f _{7/2})	-	100.9	100.9
Hg ²⁺ (Hg 4f _{5/2})	-	104.9	104.9

Table S7: XPS peaks position of various groups for G8GE, mtG8GE and recovered mrG8GE.

Fig. S46: FE-SEM images of (a) **M1G8GECl₂** gel by mixing (b) **M1G8GECl₂Ads** by adsorption (c) **M1G8GECl₂Ads** when **G8GE** inserted inside the aqueous solution of HgCl₂.

Table S8: Recyclability of xerogel **G8GE** for heavy metal separation.

Concentration of Hg(CH ₃ COO) ₂ in ppm before treatment (20 mL water)	Concentration in ppm after treatment by xerogel G8GE (ppm)	Removal % from water
318 ppm (1 mM)	2.514	99.21
318 ppm (1 mM)	5.092	98.39
318 ppm (1 mM)	5.271	98.34
318 ppm (1 mM)	6.003	98.11
318 ppm (1 mM)	8.311	97.39

Table S9: Water remediation at different pH by xerogel G8GE.

Concentration of Hg(CH ₃ COO) ₂ in ppm before treatment (20 mL water)	pH of contaminated water system	Concentration in ppm after treatment by xerogel G8GE (ppm)	Removal % from water
318 ppm (1 mM)	3	87.876	72.36
318 ppm (1 mM)	5.4	2.405	99.24
318 ppm (1 mM)	7	7.338	97.69
318 ppm (1 mM)	10	5.514	98.26

Fig. S47: Time oscillation sweep experiment of organogel **G8GE** at (a) 0.02: 0.02 mmol (b) 0.03: 0.03 mmol and (c) 0.04: 0.04 mmol.

Fig. S48: Time oscillation sweep experiment of metallogel M3G8GECl₂.

Fig. S49: Time oscillation sweep experiment of metallogel M2G8GECl₂Ads.

Fig. S50: Time oscillation sweep experiment of metallogel (a) M2G8GE(OAc)₂Ads and (b) M2G8GESO₄Ads.

Fig. S51: Time oscillation sweep experiment of metallogel (a) M3G8GECl₂Ads and (b) M3G8GE(OAc)₂Ads.

Table S10. Intermolecular H-bond binding energies of individual sites along with the associated bond lengths of structure **G8GE**.

Binding Site	H-bond length (Å)	ρ(r _{всР}) (a.u.)	HBE (kcal/mol)
O-HO	1.66	0.0497	-10.33
O-HO	1.66	0.0497	-10.34
O-HN	1.86	0.0367	-7.44
O-HN	1.86	0.0368	-7.46
N-HO	1.70	0.0466	-9.65
N-HO	1.70	0.0466	-9.66

Table S11. Cartesian coordinates of GE.

69

Energy = -2163.413966 Hartree

Lifergy -	-2103.+1370011		
С	-1.19846001	0.73221939	0.55276116
С	0.02869176	1.39738300	0.56213802
С	1.23003830	0.67766094	0.55260126
С	1.19265187	-0.71858676	0.56012894
С	-0.03149061	-1.39932539	0.55113776
С	-1.22115608	-0.66837765	0.55842979
Н	0.09482226	2.47894230	0.61111845
Н	2.09676942	-1.31610398	0.60662826
Н	-2.19116349	-1.15159696	0.60271265
С	-2.53040615	1.43298728	0.59024847
С	2.50319919	1.48026541	0.58766266
Ċ	0.02672127	-2.90351111	0.58828944
H	-1.69591308	3.06402567	-0.32700222
Н	3.48836622	-0.05008641	-0.35052830
Н	-1.79486736	-2.99561167	-0.34384610
0	-3.53239696	0.86264417	1.02043008
Õ	2.51412792	2.62875394	1.02920696
0	1.01880192	-3.48687147	1.02417157
Č	-3.67362612	3.56646183	0.01825512
Ċ	-4.94035382	3.08690831	-0.29865477
С	-3.46068302	4.95505480	0.21597418
С	-6.02112368	3.97076342	-0.43468672
Н	-5.08282387	2.02479357	-0.43534854
С	-4.54838969	5.83238796	0.04587756
С	-5.80695046	5.34856871	-0.27196254
Н	-4.39162436	6.89825656	0.18773794
Н	-6.64446209	6.02871452	-0.38427905
С	4.92117952	1.39886617	0.00186529
С	5.14931034	2.74147218	-0.28165803
С	6.01048431	0.50387486	0.16070418
С	6.45866579	3.22388696	-0.42477201
Н	4.30655347	3.40904848	-0.38841409
С	7.31677893	0.99635421	-0.01750844
С	7.53749157	2.33375664	-0.30392747
Н	8.15565912	0.31476730	0.09308936
Н	8.54788170	2.71038291	-0.42269269
С	-1.25132415	-4.95943801	0.01454531
С	-2.56626639	-5.46187043	0.19459111
С	-0.20215316	-5.82343438	-0.28090611
С	-2.78691305	-6.84189881	0.02567421
С	-0.43242739	-7.20047990	-0.41412560
Н	0.79330722	-5.42166667	-0.40347363
С	-1.73781901	-7.69659024	-0.27157829
Н	-3.79237242	-7.23349374	0.15244468
Н	-1.91225248	-8.76140573	-0.38295918
Ν	-2.54061117	2.71611234	0.11108099

Ν	3.61582580	0.85010705	0.09618788
Ν	-1.07672698	-3.55354985	0.10268612
Ν	-2.18885498	5.42512489	0.50559506
Н	-2.14854878	6.39616001	0.79387656
Н	-1.63683265	4.83785119	1.12171081
Ν	-3.60892083	-4.58824108	0.46447757
Н	-4.47681386	-5.03391113	0.74009931
Н	-3.38189235	-3.81753399	1.08386301
Ν	5.76930442	-0.83685005	0.42136554
Н	6.58858045	-1.37483920	0.67989169
Н	4.99724589	-1.02457113	1.05250428
С	-7.38188170	3.50139610	-0.76107190
0	-8.35423701	4.22567990	-0.91309939
0	-7.47136060	2.15255980	-0.87750096
Н	-8.40105968	1.95039289	-1.09269482
С	6.74356996	4.64290164	-0.71580212
0	7.85962324	5.11389602	-0.87680826
0	5.62698998	5.40969911	-0.79477948
Н	5.92315514	6.31814743	-0.99063721
С	0.65532893	-8.15091367	-0.71756123
0	0.51133837	-9.35519420	-0.86687932
0	1.87198729	-7.55939426	-0.82097735
Н	2.51305501	-8.26623023	-1.02367954

Table S12. Cartesian coordinates of G8.

30			
Energy	= -1217.738870 Ha	artree	
С	-1.21535050	-0.45363285	0.00000422
С	1.00077919	-0.82616842	-0.0000089
С	0.21537843	1.27937668	-0.00001944
Ν	1.29445634	0.47734839	-0.00001501
Ν	-1.06028443	0.88191256	-0.00000903
Ν	-0.23333181	-1.35970545	0.00000765
Н	1.45750405	2.89693034	-0.00004038
Н	-3.23673369	-0.18562011	0.00000489
Н	1.78025422	-2.71064685	0.00001968
С	-0.43229902	3.64706277	-0.00002452
Ν	-1.77192724	3.53584929	-0.00000207
Н	-2.32050158	2.68258413	0.00001786
С	-2.94288617	-2.19764829	0.00002517
Ν	-2.17720375	-3.30241305	0.00003900
Н	-1.16400359	-3.35118725	0.00004321
С	3.37514475	-1.44933687	-0.00000462
Ν	3.94865196	-0.23366423	-0.00002590
Н	3.48364934	0.66788400	-0.00004194
Ν	2.02973759	-1.72823997	0.00000503
Ν	-2.51111901	-0.89334606	0.00001080
Ν	0.48204458	2.62151062	-0.00002832

Ν	-0.11085780	4.93340497	-0.00003809
Ν	-1.29798669	5.59703553	-0.00002258
Ν	-2.30170728	4.78205726	-0.00000139
Ν	-4.21779186	-2.56193236	0.00003046
Ν	-4.19944401	-3.92190063	0.00004837
Ν	-2.99192505	-4.38404027	0.00004962
Ν	4.32844276	-2.37094191	0.00000747
Ν	5.49678629	-1.67469416	-0.00000696
Ν	5.29277809	-0.39793515	-0.00003232

Table S13. Cartesian coordinates of 2GE-2G8 (G8GE).

198

Energy = -6762.402264 Hartree

Lifergy -	0/02.+0220+110	uuce	
С	15.66640983	-2.02490993	0.20242577
С	14.38171527	-1.62059262	0.57047069
С	14.04557966	-0.26134741	0.61166582
С	15.01742918	0.69309369	0.30485513
С	16.31078690	0.30201333	-0.06474111
С	16.63121680	-1.05649365	-0.10275531
Н	13.62051544	-2.33424720	0.86678293
Н	14.81894157	1.75699772	0.37400013
Н	17.63292493	-1.40335896	-0.33243728
С	16.10881778	-3.46320766	0.16576719
С	12.64347236	0.07776183	1.04279347
С	17.29812290	1.40274929	-0.34774425
Н	14.19271342	-4.03186566	-0.27486556
Н	12.73685965	1.82089448	-0.02929387
Н	18.32547195	0.15395330	-1.60418552
0	17.29342354	-3.76390595	0.30980829
0	11.98449629	-0.70941573	1.72148305
0	17.14363463	2.52708770	0.12814428
С	15.26987022	-5.78946935	-0.13441296
С	16.40388325	-6.38636499	-0.67592073
С	14.18415911	-6.58633843	0.31336846
С	16.48234934	-7.78181884	-0.79577680
Н	17.22420261	-5.76320586	-1.00085918
С	14.26547498	-7.98233061	0.15694574
С	15.39596655	-8.57073983	-0.38691647
Н	13.43427045	-8.59811888	0.48935252
Н	15.45911210	-9.64888138	-0.48830186
С	10.87094099	1.81565790	0.85879390
С	9.73969052	1.01079357	0.93556339
С	10.75546641	3.22609706	0.96966265
С	8.47083820	1.58347742	1.10999219
Н	9.84618242	-0.06162325	0.86152945
С	9.47248321	3.78724137	1.11090924
С	8.34856847	2.98026344	1.18087450
Н	9.37615724	4.86669115	1.18710182

Н	7.36525554	3.41985018	1.30806782
С	19.38399420	1.93145602	-1.59698326
С	20.66535701	1.35605545	-1.79806223
С	19.16799421	3.27906585	-1.86624056
С	21.69332271	2.16855083	-2.31220073
С	20.21118836	4.08301678	-2.34857646
Н	18.18758201	3.70019532	-1.69707769
С	21.47096216	3.50924575	-2.58118495
Н	22.67503996	1.73316674	-2.47675245
Н	22.27279455	4.13345791	-2.96078055
Ν	15.11525939	-4.38214841	-0.04568519
Ν	12.16720585	1.29052658	0.61937315
N	18.34539415	1.06624611	-1.16407217
N	13.04842482	-5.97908812	0.83007917
Н	12.38876501	-6.61342760	1.26575768
Н	13 21639299	-5 17022027	1 41914773
N	20 86461134	0.00602048	-1 55063636
н	21.83373735	-0 29056294	-1 56311396
н Н	21.03375735	-0.29030294 -0.36517308	-0.74010218
N	11 8880/855	-0.30317308	0.873051/6
н	11.00004055	4.02008740	1 11220383
П Ц	12 71820204	2 65016827	1.11230363
	12./1029294	2.03010837 2.45400465	1.32377309
C	17.0/12404/	-0.43400403	-1.55024424
0	1/./0010/03	-9.00103834	-1.30//1330
0	18.001/2403	-/.3930318/	-1.70208382
H	19.39042132	-8.13418596	-2.0602/68/
C	/.25968393	0.74888320	1.20680/91
0	6.12584283	1.23/16855	1.32216546
0	7.48104555	-0.559/8/15	1.16212171
H	6.611240/2	-1.05/506/5	1.23985874
C	20.02502893	5.51856791	-2.63/552/8
0	20.88840591	6.26036260	-3.08190606
0	18.77392274	5.96453394	-2.36030827
Н	18.75748919	6.91307490	-2.58719549
С	-5.04765182	-1.07179686	1.92715093
С	-5.38135077	0.28398872	1.91298225
С	-4.38558316	1.26634518	1.99129977
С	-3.04933087	0.87862368	2.10976507
С	-2.69919476	-0.47745330	2.11981104
С	-3.70220024	-1.44502694	2.03886847
Н	-6.41068344	0.62332780	1.87353185
Н	-2.24964718	1.60147512	2.22878957
Н	-3.48028756	-2.50496113	2.09535248
С	-6.05683574	-2.18838956	1.87859199
С	-4.84790061	2.69937057	1.98814770
С	-1.23777565	-0.80325695	2.27415870
Н	-7.39916188	-0.95370591	0.93746015
Н	-3.03309927	3.29532761	1.23842149
Н	-1.52736687	-2.54103471	1.23384363
0	-5.77253372	-3.31418238	2.28563520

0	-5.99972640	2.99219594	2.30618874
0	-0.46712700	-0.00975267	2.81341094
С	-8.36470864	-2.77418674	1.18507509
С	-8.17340238	-4.07631460	0.74155508
С	-9.67196160	-2.29071833	1.45251835
С	-9.26859418	-4.93202606	0.54550278
Н	-7.16837758	-4.42709335	0.55412107
С	-10.76450100	-3.14977622	1.21809093
С	-10.56790636	-4.44688065	0.77685153
Н	-11.77027973	-2.78656089	1.41035551
Н	-11.42278813	-5.09572492	0.62182224
С	-4.15143282	5.02578545	1.48076880
С	-5.32950034	5.53107787	0.94640033
Ċ	-3.11266721	5.90268011	1.88827846
С	-5.50981114	6.91488670	0.79612078
H	-6.11074493	4.84539881	0.65014854
C	-3.29545025	7.28819029	1.70407307
C	-4.47187842	7.78624811	1.17136707
H	-2 50324511	7 96793090	2 00535436
Н	-4.59640581	8.85713506	1.05448521
C	0.47122062	-2.54130124	1.75680210
C	0.60153788	-3.95419217	1.80870548
C	1 60033075	-1 73646140	1 65000195
C	1 88780675	-4 51569125	1 70501107
C	2.87843423	-2.31096132	1.57965586
H	1.48510521	-0.66285371	1.62306788
C	3 00832304	-3 70862000	1 59307651
H	1 99351644	-5 59664960	1 73537268
Н	3 99730396	-4 14944473	1 53104254
N	-7 28110619	-1 87022535	1 35198143
N	-3 91827074	3 62881085	1 60073011
N	-0.84576999	-2 01443241	1 76741473
N	-9 85653730	-0.98888996	1.87536625
Н	-10 78109902	-0 77025220	2 22699891
Н	-9 12742467	-0.60685684	2.22099091
N	-0 53133920	-4 74991286	1 89217826
Н	-0 35016547	-5 73094113	2 07102993
Н	-1 26744678	-4 40080491	2 49671340
N	-1 93357646	5 39294441	2 39457337
Н	-1 32117931	6 06533940	2.39137399
H	-2 01264487	4 53685378	2.04057770
C	-9 08498804	-6 31880610	0.09111935
0	-10.03674909	-7 09015581	-0 10463392
0	-7 81395921	-6 67299782	-0.09087078
н	-7 71168666	-7 61728832	-0 39913592
n C	-6 75224592	7 46833334	0.23615319
$\tilde{0}$	-6 92809718	8 68545149	0 07248899
õ	-7 66676115	6 55310001	-0.08030036
н	-8 49872992	6 94847797	-0 46599446
C	4.08908200	-1.47625909	1.47600757
-		<i></i>	····

0	5.22431200	-1.96468225	1.37569289
0	3.86580973	-0.16739668	1.49903395
Н	4.73619630	0.33020679	1.42719151
С	-10.09450635	13.13389251	-1.53464278
С	-8.03447388	13.01566563	-0.64546821
С	-9.20267208	11.13791890	-1.04539470
Ν	-8.06679529	11.68820111	-0.59011279
Ν	-10.25771827	11.79669388	-1.53280148
N	-9.01781983	13.80780873	-1.10811824
Н	-8.34865488	9.34594666	-0.57721138
Н	-11.95574318	13.31399719	-2.34410127
Н	-6.85655263	14.64075891	-0.22717519
C	-10.19176363	8.91684556	-1.33022264
N	-11.39579528	9.18093872	-1.85921638
Н	-11.79122282	10.08693891	-2.08727707
C	-11.25031779	15.21270791	-2.14230339
N	-10 32255323	16 11891194	-1 78818021
Н	-9 40985392	15 93831290	-1 38300662
C	-5 79160284	12 99071857	0 32309428
N	-5 60169462	11 66518841	0.32309428
Н	-6 22836849	10.89513100	0.47769472
N	-6 89874044	13 62897195	-0 19067773
N	-11 15390201	13.84752909	-2.02817700
N	-9 20685613	0 77806/15	-2.02017700
N	-10 07798322	7 59905266	-1 19250112
N	-11 2//5/833	7.0750200	-1.65225653
N	12 04530304	8 00175766	2 05/0153/
N	12 30/68001	15 85070052	2.03491334
IN N	-12.30408091	13.83079932	-2.03223334
IN N	10 80721074	17.17110100	-2.30310924
IN NI	-10.60/210/4	12 62724860	-2.0020/130
IN NI	-4./1110139	12 65247721	1 17724757
IN N	-3.80282432	12.03247721	1.1//24/3/
N C	-4.3/089030	11.4/034/73	1.01000000
C	-12.101/3/90 12 17447722	-12.1001/205	-1.32323789
C C	-13.1/44//33	-10.23003040	-0.8813/903
C N	-10.93028033	-10.304/1//3	-1.03408000
IN N	-12.01332310	-9.02049003	-0.70070230
IN N	-10.94516452	-11.04290009	-1.44214942
	-13.33436036	-11.33380928	-1.20202912
П U	-9.84///392	-6.09/11136 12.02006277	-0.01439337
П	-11.34/36908	-13.930902//	-2.11020448
П	-13.20010217	-10.012/3810	-0.0/032233
	-8.49983204	-10.13404099	-1.12830019
IN II	-8.086/4892	-11.35010215	-1.51/1/596
п	-8.03314911	-12.103308/8	-1./2908593
	-13.35820349	-14.24581948	-2.08912460
	-14.03293/46	-13.80309690	-1.89959164
П	-14.90313033	-12.93044930	-1.00315430
U	-14.34447/33	-8.22882349	-0.18105/80
N	-13.30351175	-7.39426789	0.01045255

-12.30714227	-7.57139473	-0.10858550
-14.30609695	-9.54319510	-0.59106661
-12.23340783	-13.47620965	-1.92054972
-9.76400145	-9.68625113	-0.92059797
-7.42821350	-9.36542753	-0.95918916
-6.35796304	-10.14855710	-1.25599769
-6.72847210	-11.33694553	-1.59162710
-13.34653847	-15.51455030	-2.47524600
-14.65424398	-15.88701848	-2.51322684
-15.43833771	-14.91673564	-2.17335749
-15.46695297	-7.57690881	0.09401176
-15.07807834	-6.32655452	0.45716177
-13.79188356	-6.19944340	0.41331586
	-12.30714227 -14.30609695 -12.23340783 -9.76400145 -7.42821350 -6.35796304 -6.72847210 -13.34653847 -14.65424398 -15.43833771 -15.46695297 -15.07807834 -13.79188356	-12.30714227 -7.57139473 -14.30609695 -9.54319510 -12.23340783 -13.47620965 -9.76400145 -9.68625113 -7.42821350 -9.36542753 -6.35796304 -10.14855710 -6.72847210 -11.33694553 -13.34653847 -15.51455030 -14.65424398 -15.88701848 -15.43833771 -14.91673564 -15.46695297 -7.57690881 -15.07807834 -6.32655452 -13.79188356 -6.19944340

References

- 1. H.L. Yang, X.W. Sun, Y.M. Zhang, Z.H. Wang, W. Zhu, Y.Q. Fan, T.B. Wei, H. Yao and Q. Lin, *Soft Matter*, 2019, **15**, 9547-9552.
- 2. A. Kumar, T. Das, R.S. Thakur, Z. Fatima, S. Prasad, N.G. Ansari and D.K. Patel, *ACS omega*, 2022, **7**, 1997-42011.
- 3. T.B. Wei, Q. Zhao, Z.H. Li, X.Y. Dai, Y.B. Niu, H. Yao, Y.M. Zhang, W.J. Qu and Q. Lin, *Dyes and Pigments*, 2021, **192**, 109436.
- 4. A. De and R. Mondal, *ACS omega*, 2018, **3**, 6022-6030.