Supporting Information

High energy density liquid state asymmetric supercapacitor device using Co-Cr-Ni-Fe-Mn High Entropy Alloy

Gobinda C. Mohanty^a, Chinmayee C. Gowda^a, Pooja Gakhad^b, M. Sanjay^c, Suman Sarkar^d, Koushik Biswas^{a,c*}, Abhishek Singh^{b*} and Chandra S. Tiwary ^{a,c*}

E-mail: <u>k_biswas@metal.iitkgp.ac.in</u>, <u>abhishek@iisc.ac.in</u> and <u>chandra.tiwary@metal.iitkgp.ac.in</u>

Figure S1: Elemental mapping of all elements (Co, Cr, Ni, Fe and Mn).

Figure S2: Particle size distribution of CCNFM HEA powder obtained from DLS.

Figure S3: (a) Tauc plot of ball milled HEA samples and (b) Raman spectroscopic results for the same.

Figure S4: (a) Zeta potential and (b) BET N_2 adsorption and desorption curves obtained a specific surface area of 25 m² g⁻¹. (c) Pore volume vs. pore diameter.

Figure S6: CV and GCD of activated carbon anode electrode at 3M KOH.

Figure S7: (a) CV of FCNCM HEA electrode at different concentration of aqueous KOH electrolyte at 50 mV s⁻¹, (b) Specific capacitance vs. concentration at 50 mV s⁻¹.

Figure S8: Charge discharge at 0.5 A g⁻¹ for ASC liquid state device.

Figure S9: 13-atom icosahedron of Co, Cr, Fe, Mn (top left to right), Ni (bottom left) and CoCrFeMnNi HEA (bottom right).

Figure S10: *d*-band center.

Figure S11: Plot showing adsorption energy difference in individual elements.

 Table 1: Comparison among various liquid state asymmetric devices

Electrode	Device	Energy	Power	Cyclic	Ref.
material	type	density	density	stability	
		(Wh/kg)	(W/kg)		
Mn ₃ (PO ₄) ₂ GF//AC	Asymmetric	7.6	360	96% after 10k	[3]
				cycle	
CaCu ₂ O ₃ //AC	Asymmetric	11.8	362	90.9 % after 10k	[4]
				cycles	
CuCo ₂ O ₄ //CNF	Asymmetric	21.5	400	91.1% after 5k	[5]
				cycles	
FeNiCoMnMg	Symmetric	21.7	-	85% after	[6]
HEA-NPs/ACNFs				2k cycles	
HEO/f-CSAC	Symmetric	3.55	862.5	94.4% after 500	[7]
				cycles	
ZNCO//AC	Asymmetric	35.6	187.6	90% after 3k	[8]
				cycles	
NiNTAS@	Asymmetric	34.1	3197.7	92.3% after 5k	[9]
Fe2O3//				cycle	

NiNTAS@MnO2					
Ni-Co-PO ₄ //AC	Asymmetric	32.5	600	80.4% after 5k	[10]
				cycles	
NiCo ₂ O ₄ @MnO ₂	Asymmetric	35	163	71% after 5k	[11]
// AC				cycles	
CoMoO ₄ @	Asymmetric	28.7	262	99% after 3k	[12]
NiMoO ₄ // AC				cycles	
MnO ₂ /rGO//AC	Asymmetric	25.14	250	-	[13]
FeCoNiCrMn//	Asymmetric	21	307	88.5% after 5k	This
AC				cycles	Work