Supplementary Information

Direct CO₂-to-methanol reduction on Zr₆-MOF based composite catalysts: a critical review

Elif Tezel^a, Dag Sannes^a, Stian Svelle^a, Petra Agota Szilágyi^a and Unni Olsbye^{a*}

^aDepartment of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo.

*Corresponding Author E-mail Address: unni.olsbye@kjemi.uio.no

			Metal loading (wt. %)			React	ion Con	ditions	Performance of Catalysts	
Ref. #	MOFs	Active Metal	Cu	Zn	Pt	T (°C)	P (bar)	GHSV (1/h)	Conversion (%)	Selectivity (%, MeOH)
1	UiO-66 (Zr)	Cu-ZnO _x	12	4.2		230	50	10000	30	15.7
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	4.19	10		180	40	12000	0.1	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	7.53	7.8		180	40	12000	0.12	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	8.37	6.9		180	40	12000	0.04	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	9.01	6.5		180	40	12000	0.19	100
2	UiO-66 (Zr)	Cu	6.65			180	40	12000	0.19	99.9
2	UiO-66 (Zr)	Cu/ZnO _x	6.21			180	40	12000	0.08	98
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.02	9.5		180	40	12000	0.14	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.86	9.24		180	40	12000	0.2	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	3.35	10.77		180	40	12000	0.08	100
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	6.7	8.4		180	40	12000	0.47	100
3	UiO-66 (Zr)	Cu	1.5			200	40	10000	NA	11.3
3	UiO-66 (Zr)	Cu	1.4			200	40	10000	NA	4.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.86	9.24		200	40	12000	0.83	99.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	3.35	10.77		200	40	12000	0.36	99.9
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	4.19	10		200	40	12000	0.4	99.7
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.02	9.5		200	40	12000	0.58	99.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	6.7	8.4		200	40	12000	1.41	99.2
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	7.53	7.8		200	40	12000	0.4	99
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	8.37	6.9		200	40	12000	0.23	99
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	9.01	6.5		200	40	12000	0.74	98.8
2	UiO-66 (Zr)	Cu	6.65			200	40	12000	0.25	98.9
2	UiO-66 (Zr)	Cu/ZnO _x	6.21			200	40	12000	0.33	90.2
4	MOF 808	Zn		15.2		200	40	4500	0.01	99
5	UiO-67 (Zr)	Cu-Zn	6.9	6		200	40	18000	0.5	100
4	MOF 808	Zn		15.2		210	40	4500	0.21	99
3	UiO-66 (Zr)	Cu	1.5			220	40	10000	NA	17.6
3	UiO-66 (Zr)	Cu	1.4			220	40	10000	NA	6.5
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	5.86	9.24		220	40	12000	1.95	97.7
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	3.35	10.77		220	40	12000	1.06	87.6
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	4.19	10		220	40	12000	1.26	96.2
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.02	9.5		220	40	12000	1.4	92.3
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	6.7	8.4		220	40	12000	1.79	90.5
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	7.53	7.8		220	40	12000	1.19	86.4
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	8.37	6.9		220	40	12000	0.84	85.9

Table 1. Detailed information regarding experimental data points used in the article. The data is ordered from high pressure to low pressure and low temperature to high temperature.

2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	9.01	6.5	220	40	12000	1.6	84.7
2	UiO-66 (Zr)	Cu	6.65		220	40	12000	0.51	85.1
2	UiO-66 (Zr)	Cu-ZnO _x	6.21		220	40	12000	0.85	78.5
2	UiO-66 (Zr)	Cu-ZnO _x	6.21		220	40	12000	0.85	78.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	8.37	6.9	220	40	12000	0.84	85.9
5	UiO-67 (Zr)	Cu-Zn	6.9	6	220	40	18000	1.2	100
4	MOF 808	Zn		15.2	220	40	4500	0.36	99
4	MOF 808	Zn		15.2	230	40	4500	0.78	99
3	UiO-66 (Zr)	Cu	1.5		240	40	10000	NA	23.3
3	UiO-66 (Zr)	Cu	1.4		240	40	10000	NA	10.4
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	5.86	9.24	240	40	12000	3.04	89
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	3.35	10.77	240	40	12000	1.57	82.6
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	4.19	10	240	40	12000	2	86.9
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	5.02	9.5	240	40	12000	2.55	80.6
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	6.7	8.4	240	40	12000	2.62	83.5
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	7.53	7.8	240	40	12000	2.23	80.6
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	9.01	6.5	240	40	12000	2.47	82.6
2	UiO-66 (Zr)	Cu	6.65		240	40	12000	1.18	62.5
2	UiO-66 (Zr)	Cu-ZnO _x	6.21		240	40	12000	1.21	70.3
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	8.37	6.9	240	40	12000	1.38	84.7
4	MOF 808	Zn		15.2	240	40	4500	1.1	99
5	UiO-67 (Zr)	Cu-Zn	6.9	6	250	40	18000	3.3	100
5	UiO-67 (Zr)	Cu-Zn	6.9	6	250	40	6000	7.2	100
5	UiO-67 (Zr)	Cu-Zn	6.9	6	250	40	1600	17.4	85.6
5	UiO-67 (Zr)	Cu-Zn	10.5	2.7	250	40	18000	0.88	100
5	UiO-67 (Zr)	Cu-Zn	10.1	5.5	250	40	18000	1.56	100
5	UiO-67 (Zr)	Cu-Zn	6.7	6.1	250	40	18000	3.42	100
5	UiO-67 (Zr)	Cu	11		250	40	18000	0.76	100
5	UiO-67 (Zr)	Cu	11		250	40	1600	5.6	51.9
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	5.86	9.24	250	40	18000	3	87.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.86	9.24	250	40	12000	3.51	86.1
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.86	9.24	250	40	6000	4.39	84.2
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	5.86	9.24	250	40	1500	7.33	82.4
2	UiO-66 (Zr)	Cu	6.65		250	40	12000	1.72	60.2
2	UiO-66 (Zr)	Cu-ZnO _x	6.21		250	40	12000	0.44	85.3
4	MOF 808	Zn		4.3	250	40	4500	0.6	94.3
4	MOF 808	Zn		8.2	250	40	4500	1.1	99
4	MOF 808	Zn		11.5	250	40	4500	1.6	99
4	MOF 808	Zn		15.2	250	40	4500	2.1	99
4	UiO-66 (Zr)	Zn		12.9	250	40	4714	0	0
4	UiO-66 (Zr)	Zn		13.8	250	40	4500	1.29	99

4	UiO-67 (Zr)	Zn		12.2		250	40	4500	1.53	99
3	UiO-66 (Zr)	Cu	1.5			260	40	10000	NA	24.1
3	UiO-66 (Zr)	Cu	1.4			260	40	10000	NA	9.9
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	5.86	9.24		260	40	12000	4.3	77.5
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	3.35	10.77		260	40	12000	2.6	72.4
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	4.19	10		260	40	12000	3.31	76
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	6.7	8.4		260	40	12000	3.96	75.4
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	7.53	7.8		260	40	12000	3.08	76.6
2	UiO-66 (Zr)	Cu-ZnO _x (DSM)	8.37	6.9		260	40	12000	1.96	75.5
2	UiO-66 (Zr)	$Cu-ZnO_x(DSM)$	9.01	6.5		260	40	12000	3.6	74
2	UiO-66 (Zr)	Cu	6.65			260	40	12000	2.26	58.7
2	UiO-66 (Zr)	Cu-ZnO _x	6.21			260	40	12000	1.65	65.4
3	UiO-66 (Zr)	Cu	1.5			280	40	10000	NA	19.9
3	UiO-66 (Zr)	Cu	1.4			280	40	10000	NA	6.2
6	UiO-66 (Zr)	Cu	1.4			230	32	11667	NA	NA
6	UiO-66 (Zr)	Cu	1.4			250	32	11667	NA	29.6
6	UiO-66 (Zr)	Cu	0.04			250	32	11667	NA	NA
6	UiO-66 (Zr)	Cu	7.62			250	32	11667	NA	NA
6	UiO-66 (Zr)	Cu	1.8			250	32	11667	NA	NA
6	UiO-66 (Zr)	Cu	1.4			275	32	11667	NA	NA
7	UIO-67(Zr)	Pt			2.7	170	30	NA	1.7	41.5
7	UIO-67(Zr)	Pt			2.7	190	30	NA	2.5	22.5
7	UIO-67(Zr)	Pt			2.7	210	30	NA	4.3	42.5
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		220	30	2400	13	53
7	UIO-67(Zr)	Pt			2.7	240	30	NA	9.1	31.8
8	UiO-66 (Zr)	Cu-ZnO _x	10.5	4.2		240	30	2400	5.2	48.3
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		240	30	2400	18.5	49.2
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		240	30	4800	15.6	52.2
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		240	30	9600	11.8	55.6
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		240	30	12000	8.5	56.2
8	UiO-66 (Zr)	Cu-ZnO _x	40.6	16.6		240	30	2400	12.6	46.4
8	UiO-66 (Zr)	Cu-ZnO _x	17.8	18.1		240	30	2400	3.1	45.9
8	UiO-66 (Zr)	Cu-ZnO _x	27.8	7.1		240	30	2400	7.6	60.6
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		260	30	2400	21.9	39.2
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		280	30	2400	21.4	29.1
8	UiO-66 (Zr)	Cu-ZnO _x	25.9	10.5		300	30	2400	19	27.5
7	UIO-67(Zr)	Pt			2.7	170	20	NA	1.7	36.2
7	UIO-67(Zr)	Pt			2.7	170	15	NA	1.7	33.3
9	UiO-66 (Zr)	Cu	1			175	10	NA	3	100
9	UiO-66 (Zr)	Cu	1.4			175	10	NA	NA	NA
9	UiO-66 (Zr)	Cu	1			200	10	NA	2.76	100

9	UiO-66 (Zr)	Cu	1		225	10	NA	2.5	100
9	UiO-66 (Zr)	Cu	1		250	10	NA	1.48	100
9	UiO-66 (Zr)	Cu	1.4		250	10	NA	NA	NA
7	UIO-67(Zr)	Pt		2.7	170	8	NA	1.5	22.5
10	UIO-67(Zr)	Pt		2.7	170	8	NA	1.3	18.5
10	UIO-67(Zr)	Pt		2.7	170	6	NA	1.13	15.8
10	UIO-67(Zr)	Pt		2.7	170	3	NA	1	8.4
10	UIO-67(Zr)	Pt		2.7	170	1	NA	0.88	2.6
7	UIO-67(Zr)	Pt		2.7	170	1	NA	1.3	2

#DSM : Double solvent method

References

- 1. Z. G. Duma, X. Dyosiba, J. Moma, H. W. Langmi, B. Louis, K. Parkhomenko and N. M. Musyoka, *Catalysts*, 2022, **12**, 401.
- 2. Y. Yang, Y. Xu, H. Ding, D. Yang, E. Cheng, Y. Hao, H. Wang, Y. Hong, Y. Su, Y. Wang, L. Peng and J. Li, *Catalysis Science & Technology*, 2021, **11**, 4367-4375.
- 3. C. E. Pompe and P. Á. Szilágyi, *Faraday Discussions*, 2021, **231**, 371-383.
- 4. J. Zhang, B. An, Z. Li, Y. Cao, Y. Dai, W. Wang, L. Zeng, W. Lin and C. Wang, *Journal of the American Chemical Society*, 2021, **143**, 8829-8837.
- 5. B. An, J. Zhang, K. Cheng, P. Ji, C. Wang and W. Lin, *Journal of the American Chemical Society*, 2017, **139**, 3834-3840.
- 6. Y. Zhu, J. Zheng, J. Ye, Y. Cui, K. Koh, L. Kovarik, D. M. Camaioni, J. L. Fulton, D. G. Truhlar, M. Neurock, C. J. Cramer, O. Y. Gutiérrez and J. A. Lercher, *Nature Communications*, 2020, **11**, 5849.
- E. S. Gutterød, S. H. Pulumati, G. Kaur, A. Lazzarini, B. G. Solemsli, A. E. Gunnæs, C. Ahoba-Sam,
 M. E. Kalyva, J. A. Sannes, S. Svelle, E. Skúlason, A. Nova and U. Olsbye, *Journal of the American Chemical Society*, 2020, **142**, 17105-17118.
- 8. J. Yu, G. Chen, Q. Guo, X. Guo, P. Da Costa and D. Mao, *Fuel*, 2022, **324**, 124694.
- 9. B. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi and G. A. Somorjai, *Nano Letters*, 2016, **16**, 7645-7649.
- E. S. Gutterød, A. Lazzarini, T. Fjermestad, G. Kaur, M. Manzoli, S. Bordiga, S. Svelle, K. P. Lillerud, E. Skúlason, S. Øien-Ødegaard, A. Nova and U. Olsbye, *Journal of the American Chemical Society*, 2020, **142**, 999-1009.