Thienyltriazine based porous organic polymers with nitrogen rich moieties: Synthesis and gas selectivity study

Neha Rani Kumar^{a,b*}, Prasenjit Das^c, Abhijeet R. Agrawal^a, Sanjay Kumar Mandal^{c*}, and Sanjio

S. Zade^a*

^aDepartment of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India. ^bDepartment of Chemistry, Dhemaji College, Dhemaji, Assam 787057, India

^cDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali,

Sector 81, Manauli PO, S. A. S. Nagar, Mohali, Punjab 140306, India

[*] email: <u>nehakumar0926@gmail.com; sanjaymandal@iisermohali.ac.in;</u>

sanjiozade@iiserkol.ac.in

Table of Contents

Serial No.	Title			Page No.
		i.	General Instrumentation	S3-S4
	Experimental	ii.	Materials	S4
1	Section	iii.	Synthesis of precursors used for polymerization; Scheme S1	S4-S6
		iv.	Procedure for the synthesis of porous polymers (Table S1)	S6-S10
		i.	Stacked FT-IR spectra of polymer precursors and porous polymers; Figure S1	S11
		ii.	FT-IR spectra of TT-TCBz (a-g); Figure S2 (a-g)	S12
		iii.	(a) Stacked solid-state UV-vis spectra of TT-CBz, TT-BCBz, TT-TCBz-	S13
2	Characterization of synthesized		b, TT-TPA (b) Stacked solid-state UV-vis spectra of TT-TCBz-(a-g); Figure S3	
	porous polymers and monomers	iv.	Kubelka-Munk plot for the band gap calculation of TT-CBz , TT-BCBz , TT-TCBz-b and TT-TPA ; Figure S4	S13
		v.	Kubelka-Munk plot for the band gap calculation of TT-TCBz (a-g) ; Figure S5	S14
		vi.	(a) Stacked PXRD patterns of TT-CBZ , TT-BCBz , TT-TCBz-b and TT-TPA (b) Stacked PXRD patterns of TT-TCBz-(a-g) ; Figure S6	S15
		vii.	(a) Stacked TGA profiles of TT-CBz , TT-BCBz , TT-TCBz-b and TT-TPA (b) Stacked TGA profiles of TT-TCBz (a-g); Figure S7	S15
		viii.	SEM, TEM and HRTEM images of TT-TCBz-(a, c, d, e, f, g) ; Figure S8	S16
		ix.	Elemental Analysis of the polymers (Table S2)	S17
		х.	Summary of the CO_2 adsorption capacity data of various porous polymers; (Table S3)	S17-S22
		xi.	Summary of the CO_2/N_2 : 15/85 (v/v) selectivity data of various POPs (^a at 273 K and 1 bar, ^b at 298 K and 1 bar); (Table S4)	S23-S24
3	NMR Spectra of	i.	¹ H NMR Spectrum of TT-TCBz; Figure S9	S24
	precursors	ii.	¹³ C NMR Spectrum of TT-TCBz ; Figure S10	S25
		iii.	Solid-state ¹³ C NMR spectra of TT-TCBz-c ; Figure S11	S25
14	References			S26

Experimental section

General Instrumentation

¹H and ¹³C NMR spectra of the monomers and precursors were recorded at room temperature using a Jeol JNM-ECS 400 spectrometer (400 MHz ¹H, 100 MHz ¹³C) or Bruker Avance 500 (500 MHz ¹H, 125 MHz ¹³C) spectrometer with tetramethylsilane as the internal reference. Chemical shifts (δ) are expressed in parts per million (ppm). The spectra were processed using MestReNova v5 and referenced to residual protonated solvent signals (CDCl₃: ¹H 7.26 ppm, ¹³C 77.16 ppm). Fourier transform infrared spectroscopy (FTIR) spectra were recorded in the range of 4000-400 cm⁻¹ using the KBr pellet technique on a Perkin-Elmer RX1 IR Spectrometer. The thermal properties of CPPs were measured by a thermogravimeter analyzer (Mettler Toledo, TGA/SDTA 851) from 40 °C to 800 °C at a heating rate of 10 °C min⁻¹ under a nitrogen atmosphere. A Rigaku (Mini Flex II, Japan) powder X-ray diffractometer equipped with Cu K α ($\lambda = 1.54059$ Å) radiation was used to record the X-ray diffraction (XRD) patterns. Solid-state UV-vis absorption spectra were obtained using a JASCO V-670 spectrophotometer. Elemental analysis was performed using a Perkin Elmer CHN analyzer. N2 adsorption-desorption isotherms were obtained on a Micromeritics Gemini VII surface area analyzer at 77.3 K and analyzed using the Barrett-Joyner-Halenda surface/volume pore analysis. Samples were degassed at 120 °C under a N2 atmosphere for 12 hours. The specific surface area was determined using the Brunauer-Emmett-Teller (BET) method. A Carl Zeiss SUPRA 55VP microscope was used to obtain the fieldemission scanning electron microscopy (FESEM) images after coating the sample with Au film. Transmission electron microscopy (TEM) images were recorded using a JEOL JEM-2100F microscope at the Department of Science and Technology, Fund for Improvement of S&T Infrastructure in Higher Educational Institutions (DST-FIST) facility of IISER Kolkata. The ¹H-¹³C CP/MAS NMR spectra were recorded on a Bruker AVANCE 500-MHz type (¹H, 500 MHz; ¹³C, 125 MHz) spectrometer at a spinning speed of 8 KHz and a relaxation delay of 10 seconds. UV-visible absorption spectra were recorded using an Agilent Cary60 UV-Vis spectrophotometer. CO₂ sorption data were recorded for pressures in the range 0–1.2 bar by the volumetric method using a BELSORP MAXinstrument. Isosteric heats of adsorption (Qst) were calculated using the Clausius-Clapeyronequation based on pure-component isotherms collected at three different temperatures of 263 K, 273 K, and 298 K. These calculations were performed using the "Heat of Adsorption" function embedded in the Belsorp Adsorption/Desorption DataAnalysis software version 6.3.1.0.

Materials

The reagents obtained from commercial sources (Sigma Aldrich, Spectrochem, Merck and Alfa Aesar) were used as received, without further purification unless otherwise specified. Toluene and Tetrahydrofuran (THF) were dried over sodium/benzophenone before use. Dry reactions were conducted in oven-dried glassware, utilizing a standard Schlenk line under an inert atmosphere of dry nitrogen. Dimethylformamide (DMF) for polymerization reactions was dried over calcium hydride followed by distillation under vacuum. Triethylamine was dried over potassium hydroxide (KOH) flakes. Dichloroethane (DCM) and chloroform (CHCl₃) were dried over calcium chloride. Solvents for Soxhlet extraction were used directly as obtained from commercial sources.

Procedure for the synthesis of precursors and polymers

Synthesis of 2,4,6-tris(5-ethynylthiophen-2-yl)-1,3,5-triazine (TE-TT)

2,4,6-tris(5-ethynylthiophen-2-yl)-1,3,5-triazine (**TT-TE**) was synthesized from 2-cyano thiophene according to the procedure reported by Misra and group.¹ ¹H data was consistent with the reported values. ¹H NMR of **TE-TT** (400 MHz, Jeol, CDCl₃): δ ppm 8.04 (d, 1H, J = 4 Hz); 7.30 (d, 1H, J = 4 Hz); 3.52 (s, 1H).

Synthesis of 3,6-dibromo-9H-carbazole (CBz)

3,6-dibromo-9H-carbazole was synthesized by using the method reported by Faulkner.²

Synthesis of 3,3',6,6'-tetrabromo-9,9'-bicarbazole (BCBz)

3,3',6,6'-tetrabromo-9,9'-bicarbazole was synthesized by using the method reported by Chen and co-workers.³

<u>Synthesis of 9,9'-((6-(5-(1,2,3,4-tetrahydro-9*H*-carbazol-9-yl)thiophen-2-yl)-1,3,5-triazine-2,4-diyl)bis(thiophene-5,2-diyl))bis(9*H*-carbazole) (TT-TCBz)</u>

Scheme S1. Synthesis of TT-TCBz

TT-TCBz was synthesized using an approach used by Han and group for the synthesis of a monomer, in which thienyltriaizne is replaced by benzene.⁴ Under a nitrogen atmosphere, a 250 mL flask was charged potassium carbonate (20.0 mmol), copper iodide (4.0 mmol), 1,10-phenanthroline (0.4 mmol), carbazole (16 mmol), 1,3,5-tribromobenzene (4.0 mmol), and dry *N*,*N*-dimethylformamide (80 mL). The reaction mixture was stirred for 30 minutes at room temperature and then heated to 110 °C for 3 days. After cooling to room temperature, water was added under

stirring, and the suspension was filtered. The solid was washed with water, then with an excess amount of petroleum, and finally with methanol. A bright yellow-colored solid, **TT-TCBz** was obtained in around 70% yield. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.33-7.36 (m, 3H); 7.49 (t, 2H, J = 8 Hz), 7.68-7.71 (m, 2H), 8.13 (d, 2H, J = 8H), 8.40-8.42 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.38, 120.33, 121.20. 123.83, 125.04, 126.52, 131.27, 137.65, 141.03, 145.43, 167.27; HRMS: m/z calculated: (M+Na)⁺ i.e. C₅₁H₃₄N₆S₃Na 849.1905, found: 849.1901.

Synthesis of tris(4-bromophenyl)amine (TPA)

tris(4-bromophenyl)amine was synthesized by using the method reported by Yoshizawa and coworkers.⁵

Synthesis of polymers TT-CBz, TT-BCBz, TT-TPA by Sonogashira-Hagihara Coupling Reaction

Polymers TT-CBz, TT-BCBz, and TT-TPA were synthesized by using standard Sonogashira-Hagihara coupling reaction. A 50 mL oven-dried three-neck round bottom flask fitted with a reflux condenser and a nitrogen purger on the top was charged with a small magnetic stirring bar. The reaction vessel was degassed and purged with nitrogen multiple times. Then, the flask was charged with bromo precursor and 2,4,6-tris(5-ethynylthiophen-2-yl)-1,3,5-triazine (TE-TT)). 7 mL anhydrous dimethylformamide (DMF) and 7 mL anhydrous triethylamine (Et₃N) were flask under followed addition added to the nitrogen, by the of tetrakis(triphenylphosphine)palladium, i.e., Pd(PPh₃)₄ (5 mol%) and copper(I)iodide (CuI), (5 mol%). The reaction mixture was stirred at 130 °C for 72 hours under a nitrogen atmosphere. The mixture was then cooled to room temperature, and the precipitated polymer was filtered and washed three times with dichloromethane, water, methanol and acetone (100 mL each) to remove

any unreacted monomers or catalyst residues. Further purification of the polymer was done by Soxhlet extraction with methanol, chloroform, tetrahydrofuran, and acetone for 24 hours each.

The amount of the reactants used are given below

For polymer TT-CBz: Acetylene derivative of thienyltriaizne, **TE-TT**: 0.300 g, 0.75 mmol, 1 equivalent and 3,6-dibromo-9*H*-carbazole: 0.243 g, 0.75 mmol, 1 equivalent. Color: brown, Yield: 93%

For polymer TT-BCBz: Acetylene derivative of thienyltriaizne, **TE-TT**: 0.350 g, 0.87 mmol, 1 equivalent and 3,3',6,6'-tetrabromo-9,9'-bicarbazole: 0.422 g, 0.65 mmol, 0.75 equivalent; Color: brown, Yield: 90%

For polymer TT-TPA: Acetylene derivative of thienyltriaizne, TE-TT: 0.250 g, 0.625 mmol, 1 equivalent and tris(4-bromophenyl)amine: 0.422 g, 0.65 mmol, 0.75 equivalent, Color: brown, Yield: 95%

Synthesis of polymers TT-TCBz-(a-g)

Polymers belonging to **TT-TCBz-(a-g)** series were synthesized under different reaction conditions to study the effect of reaction conditions on FeCl₃-mediated polymerization. The reactions were done under three different types of polymerizations: Oxidative Polymerization (OP), Friedel-Crafts polymerization (FCP) and Competitive Oxidative/Friedel-Crafts Polymerization (CO/FC-P). The detailed reaction conditions are provided below and summarized in **Table S1**.

a) Oxidative Polymerization (OP)

Synthesis of polymer TT-TCBz-a

A 250 mL two-necked round-bottomed flask was charged with compound **TT-TCBz** (1.2 g, 1.45 mmol, 1 equivalent). The flask was thoroughly evacuated and then filled with nitrogen. This was then followed by the addition of dry CHCl₃ (75 mL). The mixture was stirred for 5 minutes. In a separate single-necked flask, FeCl₃ (9.4 g, 58 mmol, 40 equivalent) was dissolved in CHCl₃ (10 mL). This mixture was added to the flask containing **TT-TCBz**. The mixture was then stirred at room temperature for 72 hours. The reaction was quenched by the addition of methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol and

6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 hours per solvent. The polymer **TT-TCBz-a** was obtained as a yellow color solid in 89% yield. Synthesis of polymer **TT-TCBz-b**

A 250 mL two-necked round-bottomed flask was charged with compound **TT-TCBz** (1.2 g, 1.45 mmol, 1 equivalent). The flask was thoroughly evacuated and filled with nitrogen. This was then followed by the addition of dry CHCl₃ (75 mL). The mixture was stirred for 5 minutes. In a separate single-necked flask FeCl₃ (9.4 g, 58 mmol, 40 equivalent) was dissolved in MeNO₂ (30 mL). This mixture was added to the flask containing **TT-TCBz**. The mixture was then stirred at room temperature for 72 hours. The reaction was then quenched by the addition of methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 h per solvent. The polymer **TT-TCBz-b** was obtained as a yellow color solid with 89% yield.

Synthesis of polymer TT-TCBz-c

A 100 mL two-necked round-bottomed flask was charged with compound TT-TCBz (600 mg, 0.73 mmol, 1 equivalent). The flask was thoroughly evacuated and filled with nitrogen. This was then followed by the addition of dry dichloroethane (35 mL). The mixture was stirred for 5 minutes. In a separate single-necked flask, FeCl₃ (4.6 g, 29 mmol, 40 equivalent) was dissolved in dichloroethane (10 mL). This mixture was added to the flask containing **TT-TCBz**, and the temperature of the flask was raised to 80 °C. The mixture was stirred for 72 hours under this condition. The reaction was then quenched by the addition of methanol. The resulting solid was filtered and washed thoroughly with water, tetrahydrofuran, methanol and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 h per solvent. The polymer **TT-TCBz-c** was obtained as a yellow color solid in 93% yield.

Synthesis of polymer TT-TCBz-d

A 100 mL two-necked round-bottomed flask was charged with compound **TT-TCBz** (600 mg, 0.73 mmol, 1 equivalent). The flask was then thoroughly evacuated and filled with nitrogen.

This was then followed by the addition of dry dichloroethane (35 mL). The mixture was stirred for 5 minutes. In a separate single-necked flask, FeCl₃ (4.6 g, 29.16 mmol, 40 equivalent) was dissolved in MeNO₂ (10 mL). This mixture was added to the flask containing **TT-TCBz**. The mixture was stirred for 72 hours under this condition. The reaction was then quenched by the addition of methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was subsequently subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 h per solvent. The polymer **TT-TCBz-d** was obtained as a yellow color solid in 90% yield.

Synthesis of polymer TT-TCBz-e

A 100 mL two-necked round-bottomed flask was charged with compound **TT-TCBz** (600 mg, 0.73 mmol, 1 equivalent). The flask was then thoroughly evacuated and filled with nitrogen. This was then followed by the addition of dry CHCl₃ (35 mL). The mixture was stirred for 5 minutes. In a separate single-necked flask FeCl₃ (4.6 g, 29.16 mmol, 40 equivalent) was dissolved in MeNO₂ (10 mL). This mixture was added to the flask containing **TT-TCBz**, and the temperature of the mixture was raised to 60 °C. The mixture was stirred for 72 hours under this condition. The reaction was then quenched by the addition of methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 h per solvent. The polymer **TT-TCBz-e** was obtained as a yellow color solid in 90% yield.

b) Friedel-Crafts polymerization (FCP)

A two-necked round-bottomed flask was charged with a stirring bar, **TT-TCBz** (600 mg, 0.17 mmol, 1 equivalent) and FeCl₃ (4.6 g, 29.16 mmol, 40 equivalent). The flask was thoroughly evacuated and filled with nitrogen. Dry dichloroethane (20 mL) was introduced, and the mixture was stirred for 5 minutes. While stirring, the color of the mixture changed to purple-red. This was followed by the slow addition of dimethoxyethane (2.23 g or 2.5 mL, 29.16 mmol, 40 equivalent) through a syringe with continuous stirring. During this process, the colour of the mixture changed to light brown. The mixture was stirred for 72 hours under this condition. The reaction was then

quenched by adding methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol, and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 hours per solvent. The polymer **TT-TCBz-f** was obtained as a yellow-colored solid with 94% yield.

c) Competitive Oxidative/Friedel-Crafts Polymerization (CO/FC-P)

A two-necked round-bottomed flask was charged with a stirring bar, **TT-TCBz** (600 mg, 0.17 mmol, 1 equivalent) and FeCl₃ (4.6 g, 29.16 mmol, 40 equivalent). The flask was thoroughly evacuated and then filled with nitrogen. Dry dichloroethane (20 mL) was introduced, and the mixture was stirred for 5 minutes. While stirring, the color of the mixture changed to purple-red. This was followed by the gradual addition of dimethoxyethane (2.23 g or 2.5 mL, 29.16 mmol, 40 equivalent) through a syringe with continuous stirring. During this process, the color of the mixture changed to light brown. The reaction mixture was stirred under these conditions for 15 minutes, after which the temperature was raised to 80 °C. The mixture was stirred for 72 hours under this condition. The reaction was then quenched by the addition of methanol. The resulting solid was filtered and thoroughly washed with water, tetrahydrofuran, methanol and 6 N HCl aq. Washing was continued until the filtrate was colorless. This precipitate was then subjected to Soxhlet extraction with methanol, dichloromethane, tetrahydrofuran, and acetone for 24 hours per solvent. The polymer **TT-TCBz-g** was obtained as a yellow color solid with 88% yield.

Table S1. Synthesis of polymer of TT-TCBz under different reaction conditions to give polymers TT-TCBz-a, TT-TCBz-b, TT-TCBz-c, TT-TCBz-d, TT-TCBz-e, TT-TCBz-f, and TT-TCBz-g, respectively.

Polymer	Polymerization	Reaction conditions	Color of polymer	Yield
	type			
TT-TCBz-a	OP	CHCl ₃ , FeCl ₃ , rt, 72 h	Yellow	89%
TT-TCBz-b	OP	CHCl ₃ , MeNO ₂ , FeCl ₃ , rt, 72 h	Yellow	89%
TT-TCBz-c	OP	DCE, FeCl ₃ , 80 °C, 72 h	Yellow	93%
TT-TCBz-d	OP	DCE, MeNO ₂ , FeCl ₃ , 80 °C, 72 h	Yellow	90%
TT-TCBz-e	OP	CHCl ₃ , MeNO ₂ , FeCl ₃ , 60 °C, 72 h	Yellow	90%
TT-TCBz-f	FCP	DCE, FeCl ₃ , rt, 72 h, 000	Yellow	94%
TT-TCBz-g	CO/FCP	DCE, FeCl ₃ , 80 °C, 72 h, 000	Yellow	88%

Figure S1. Stacked FT-IR Spectra of polymer precursors and porous polymers.

Figure S2. FT-IR Spectra of (a) TT-TCBz-a, (b) TT-TCBz-b, (c) TT-TCBz-c, (d) TT-TCBzd, (e) TT-TCBz-e, (f) TT-TCBz-f, and (g) TT-TCBz-g, respectively.

Figure S3. (a) Stacked solid-state UV-visible spectra of TT-CBz, TT-BCBz, TT-TCBz-b and TT-TPA, (b) Stacked solid-state UV-visible spectra of TT-TCBz-(a-g)

Figure S4. Kubelka-Munk plot for the band gap calculation of TT-CBz, TT-BCBz, TT-TCBzb and TT-TPA

Figure S5. Kubelka-Munk plot for the band gap calculation of TT-TCBz (a-g)

Figure S6. (a) Stacked powder X-ray patterns of TT-CBz, TT-BCBz, TT-TCBz-b and TT-TPA (b) Stacked powder X-ray patterns of TT-TCBz (a-g)

Figure S7. (a) Stacked TGA profiles of TT-CBz, TT-BCBz, TT-TCBz-b and TT-TPA. (b) Stacked TGA profiles of TT-TCBz (a-g), respectively.

Figure S8. SEM images of (a) TT-TCBz-a (d) TT-TCBz-c, (g) TT-TCBz-d (j) TT-TCBz-e (m) TT-TCBz-f and (p) TT-TCBz-g; TEM images of (b) TT-TCBz-a (e) TT-TCBz-c (h) TT-TCBz-d (k) TT-TCBz-e (n) TT-TCBz-f and (q) TT-TCBz-g; HRTEM images of (c) TT-TCBz-a (f) TT-TCBz-c (i) TT-TCBz-d (l) TT-TCBz-e (o) TT-TCBz-f, and (r) TT-TCBz-g, respectively.

Polymer	Theoretical values	Observed values
TT-CBz	C = 70.57, H = 2.33, N = 9.98	C = 64.78, H = 1.92, N = 8.79
TT-BCBz	C = 74.57, H = 2.50, N = 9.66	C = 69.54, H = 2.21, N = 9.12
TT-TPA	C = 73.37, H = 3.39, N = 8.56	C = 68.24, H = 2.23, N = 7.89
TT-TCBz-a	C = 74.98, H = 2.96, N = 10.29	C = 72.97, H = 2.54, N = 9.81
TT-TCBz-b	C = 74.98, H = 2.96, N = 10.29	C = 72.97, H = 2.54, N = 9.81
TT-TCBz-c	C = 74.98, H = 2.96, N = 10.29	C = 71.83, H = 2.66, N = 9.42
TT-TCBz-d	C = 74.98, H = 2.96, N = 10.29	C = 72.49, H = 2.89, N = 9.16
TT-TCBz-e	C = 74.98, H = 2.96, N = 10.29	C = 71.38, H = 2.85, N = 9.75
TT-TCBz-f	C = 76.49, H = 3.38, N = 9.39	C = 68.24, H = 3.21, N = 8.54
TT-TCBz-g	-	C = 67.42, H = 2.89, N = 8.87

Table S2. Elemental analysis of the polymers

The theoretical values of elemental analysis for **TT-TCBz-g have not been calculated as the exact number of methylene units is not known.

Table S3. Summary of the CO_2 adsorption capacity data of various CPPs.

Entry	Material	SA _{BET} (m ² g ⁻¹)	Temperature (K)	Pressure (bar)	Adsorption capacity (mmol g ⁻¹⁾	Reference
-	TT-TCBz-a	637	263	1	2.61	
			273		2.21	
1			298		1.29	
	TT-TCBz-b	1059	263		3.75	
			273		3.00	
			298		1.77	
	TT-TCBz-c	523	263		2.24	
			273		1.88	
			298		1.10	This work
	TT0TCBz-d	854	263		3.36	
			273		2.76	
			298		1.58	
	TT-TCBz-e	832	263		3.61	
			273		2.91	
			298		1.68	
	TT-TCBz-f	821	263		2.66	
			273		2.19	
			298		1.33	
	TT-TCBz-g	848	263		3.77	
			273		3.11	
			298		1.92	
2	TT-CPP1	545	263	1	2.62	Mater. Adv., 2021, 2,
			273		2.18	7473-7481.
			298		1.27	
	TT-CPP2	511	263		1.75	
			273		1.63	
			298		1.08	
	ТТ-СРРЗ	491	263		1.42	
			273		1.22	
			298		0.76	

2		071	272	20	20.6	
3	DAT-2	971	273	30	20.6	J. CO2. Util, 2022 , 65,
			298		9.9	102236.
			313		8.3	
	DAT-1	1105	273		73.3	
			298		18.1	
			313		12.6	
4	CNOP-1	1374	273	1	3.7	Ind. Eng. Chem. Res.,
			298		2.0	2022 , <i>61</i> , 13453-13460.
	CNOP-2	1546	273		4.0	
			298		2.2	
5	Sf-PTOTCz	852	273	1	3.29	J. Solid State Chem., 2020,
			298		1.83	287, 121327.
6	CPOP-1	2220	273	1	4.82	J. Am, Chem. Soc., 2012 , 134, 6084-6087.
7	CMP-LS1	493	273	1	1.37	New. J. Chem., 2018, 42,
			298		0.74	9482-9487.
	CMP-LS2	1576	273		3.90	
			298		2.08	
	CMP-LS3	643	273		1.85	
			298		1.05	
8	SN@CMP-1	89	273	1.05	1.08	New J. Chem., 2019, 43,
	SN@CMP-2	590	273		1.53	6838-6842.
	SN@CMP-3	804	273		2.38	
	SN@CMP-4	1143	273		2.64	
	SN@CMP-5	1356	273		2.89	
	SN@CMP-6	1172	273		3.86	
	SN@CMP-7	804	273		2.72	
9	FcCMP-1	638	273	1	2.2	Polymers, 2020, 12, 719.
	FcCMP-2	422	273		1.6	
10	Py-azo-COP	700	273	1	1.93	ACS Omega, 2017 , 2,
				15.5	4.14	3572–3582.
11	COP-3	1980	273	1	4.6	Polym. Chem., 2016, 7,
	COP-3-rt	1490	273		3.5	1290-1296.
	COP-3C	940	273		2.1	
	COP-3-600	1860	273		5.2	
	COP-3-rt-600	1370	273		5.4	
	COP-3C-600	950	273		4.3	
12	Zn-CMP	791	298	1.01	1.33	<i>ChemSusChem</i> , 2014 , <i>7</i> , 2110–2114.
13	CMP1	258	298	1	0.46	Polymer, 2016, 90, 187–
	CMP2	567			0.67	192.
14	NWPTPE	508	298	1	0.68	J. Polym. Sci., Part A:
	NWPPYR	824			0.93	<i>Polym. Chem.</i> , 2017 , <i>55</i> , 3862–3867.
15	НСТРР	582	273	1	2.79	New J. Chem., 2017, 41,
15	НСТРА	921	215		2.79	3915–3919.
	НСТРМ	670			2.14	5715 5717.
16	TSP-1	562	273	1	3.0	<i>Chem. Commun.</i> , 2014 , <i>50</i> ,
10	101-1	502	273	1	1.9	7933-7936.
	TSP-2	913	273		4.1	
	101-2	915	273		2.6	
17	TCMP-0	963	273	1	2.38	Polym. Chem., 2012, 3,
1/	1 CIVII -V	905	273	1	1.34	<i>Polym. Chem.</i> , 2012 , <i>5</i> , 928–934.
	CMP-0	1018	298		2.1	920-9 5- .
	UNII -V	1010	273		1.21	
	1		290		1.21	

	TNCMP-2	995	273		2.62	
	11(C)(11-2	335	298		1.45	
	ТСМР-3	691	273		2.25	
	1011-5	091	298		1.26	
	TCMP-5	494	273		1.20	
	I CIVII -5		298		0.68	
18	TPB-BD-CMP	657	273	1	2.5	Mater. Chem. Front.,
10	TPA-BD-CMP	543	275	1	2.94	2017 , <i>1</i> , 867–872.
	TPM-BD-CMP	1008			3.78	2017, 1, 007 072.
	SPF-BD-CMP	833			3.25	
19	P1	914	273	1	3.01	Chem. Eur. J., 2016 , 22,
17	P2	834	275	1	2.53	7179–7183.
	P3	873			2.12	/1// /105.
20	ACMP-C	629	195	1.06	11.14.	Macromolecules, 2010, 43,
20	ACMI-C	027	273	1.00	1.56	5508–5511.
			298		1.08	5500-5511.
	ACMP-C6	380	195		9.97	
		500	273		0.79	
			298		0.54	
	ACMP-N	46	195		11.5	
		10	273		1.16	
			298		0.79	
21	CMP1	767	273	1	2.94	Macromolecules, 2019, 52,
21	CMP2	624	275	1	2.7	3935–3941.
	CMP3	780			2.37	5755-5741.
22	CMP-1-NH ₂	656	273	1	1.65	Polymer, 2014, 55, 321–
22		050	298	1	0.96	325.
	CMP-1-AMD1	316	273		1.51	525.
		510	298		0.96	
	CMP-1-AMD2	264	273		1.46	
		201	298		0.92	
	CMP-1-AMD3	119	273		1.31	
			298		0.83	
	CMP-1-AMD4	59	273		1.13	
			298		0.71	
	CMP-1-AMD5	37	273		1.1	
			298		0.64	
	CMP-1-AMD9	68	273		0.87	
			298		0.54	
23	PP CMP@mmm	1928	273	1	2.52	Chem. Commun., 2014, 50,
-			298		1.36	2781–2783.
	PP_CMP@omp	43	273		0.82	
	r		298		0.43	
	PP CMP@omom	81	273		1.05	
			298		0.66	
24	Py-BF-CMP	1306	273	1	3.21	Macromolecules,
	TPE-BF-CMP	777	273		2.1	2018 , <i>51</i> , 3443–3449.
	TPA-BF-CMP	590	273		1.83	
25	HP _E -CMP	662	273	1	3.58	<i>RSC Adv.</i> , 2014 , <i>4</i> , 6447–
			298		1.7	6453.
26	СМР	772	298	1.01	1.61	Nat. Commun., 2013, 4,
	Со-СМР	965			1.8	1960.
	Al-CMP	798			1.74	
27	Cr-CMP	738	298	1.01	1.63	J. Energy Chem., 2014, 23,
						22–28.

28	Al-CMP	839	273	1.01	0.98	RSC Adv., 2015, 5, 31664–
			298		0.62	31669.
29	NCMP-I	945	273	1	1.93	Macromol. Mater. Eng.,
			298		1.43	2016 , <i>301</i> , 451–456.
	NCMP-III	593	273		0.95	
			298		0.5	
30	BQCMP-1	422	273	1	1.55	Macromol. Mater. Eng.,
20	D Q CINII I		298	-	1.06	2016 , <i>301</i> , 1104–1110.
	DQCMP-1	123	273		1.09	2010, 201, 1101 1110.
	DQUINT	123	298		0.86	
31	HCMP-1	308	273	1	1.7	Macromolecules, 2016, 49,
51	HCMP-2	58	273	1	1.23	6322–6333.
	HCMP-3	50	273		1.16	0522-0555.
	HCMP-4	28	273		0.98	
32		1701	273	1	3.47	1 de Matar 2014 26
	PTEB aerogel					<i>Adv. Mater.</i> , 2014 , <i>26</i> , 8053–8058.
33	CMP-PM	416	273	1.01	1.99	Chem. Eur. J., 2018, 24,
	CMP-PM-Me	241	273		1.42	7480–7488.
34	BO-CMP-1	440	273	1	1.8	Macromolecules, 2018,
	BO-CMP-2	1030			2.41	51, 947–953.
	oBO-CMP-1	390			1.16	
	oBO-CMP-2	540			1.7	
35	CMP-1	837	298	1	1.18	Chem. Sci., 2011,
	CMP-1-(CH ₃) ₂	899			0.94	2, 1173–1177.
	CMP-1-(OH) ₂	1043			1.07	_,,
					,	
36	BFCMP-1	1316	273	1.13	2.45	Polymer, 2015, 61, 36–41
			298		1.39	
	BFCMP-2	1470	273		2.77	
			298		1.64	
37	РРТВС	917	273	1.13	2.93	Macromol. Chem. Phys.,
			298		1.71	2015, 216, 504–510.
	PMTBC	704	273		2.86	
			298		1.79	
	PPETBC	702	273		2.23	
			298		1.25	
	РМЕТВС	540	273		1.96	
			298		1.09	
38	MFCMP-1	840	273	1	3.69	J. Mater. Chem. A, 2014,
50			215	1	5.07	2, 13422–13430.
39	СМР-УА	1410	273	1	1.25	Macromolecules,
57		1.10	298	1	1.9	2017 , <i>50</i> , 4993–5003.
	CMP-SO-1B2	1085	273		1.19	
	C1111 -5 U-1D 2	1005	298		1.92	
	CMP-SO-1B3	1080	273		1.92	
	CIIII -50-1D5	1000	273		1.22	
40	СК-СОР-1	54	298	1	0.65	J. Polym. Sci., Part A:
40		54 615	213			
	CK-COP-2	015			2.21	<i>Polym. Chem.</i> , 2017 , <i>55</i> , 2383–2389.
41	ThPOP-1	1050	273	1	3.41	Polym. Chem., 2016, 7,
	ThPOP-2	160			0.91	5031–5038.
42	Porp-TPE	547	273	1.05	2.09	Polym. Chem.,
-	Porp-Py-CMP	31	273	1.05	1.29	2019 , <i>10</i> , 819–822.
				1.00	>	
43	Por-Py-CMP	1014	273	1	3	<i>RSC Adv.</i> , 2016 , <i>6</i> ,

			298		1.86	75478–75481.
44	DA-CMP1	662	273	1.13	2.28	J. Mater. Chem. A, 2015,
			298		1.35	3, 21185–21193.
	DA-CMP2	603	273		1.64	
			298		0.95	
	Azo-CMP1	1146	273		3.72	
		1110	298		2.15	
	Azo-CMP2	898	272		3.17	
		0,0	298		1.96	
45	SCMP-COOH@1	911	298	1	1.39	Polym. Chem., 2016, 7,
	SCMP-COOH@2	622	200	1	1.07	4599–4602.
	SCMP-COOH@2	820			1.25	+555-+002.
46	ZnP-5N3-CMPs	711	273	1	1	<i>Chem. Commun.</i> , 2017 , <i>53</i> ,
40		/11	298	I	0.59	11422–11425.
	ZnP-25N3-CMPs	685	273		1.23	11422-11423.
	Zill -2513-Civil 8	005	298		0.7	
	ZnP-50N3-CMPs	654	273		1.98	
	ZIIF-SUIVS-CIVIES	034			1.11	
	ZnP-75N3-CMPs	565	298 273		1.11	
	ZIIF-/5INJ-CIVIFS	303	273		0.98	
	7D 100N2 CMD.	177				
	ZnP-100N3-CMPs	477	273		1.57 0.91	
	7-D SE CMD.	420	298			
	ZnP-5F-CMPs	430	273		1.32	
		252	298		0.77	
	ZnP-25F-CMPs	352	273		1.91	
		240	298		1.18	
	ZnP-50F-CMPs	240	273		2.95	
47		1002	298		2.04	
47	PCZN-1	1003	273	1	2.57	Polym. Chem.,
	PCZN-2	607			2.36	2017 , <i>8</i> , 7240–7247.
	PCZN-3	714			2.54	
	PCZN-4	374			2.02	
	PCZN-5	707			2.29	
	PCZN-6	718			2.82	
	PCZN-7	1058			2.91	
	PCZN-8	1126			3.18	
	PCZN-9	690			2.93	
	PCZN-10	391			1.7	
48	PCTF-8	625	273	1	2.47	J. Mater. Chem. A, 2016,
10		0.70	293		1.41	<i>4</i> , 13450–13457.
49	BCMP3	950	273	1	2.41	<i>Chem. Eur. J.</i> , 2015 , <i>21</i> ,
- 0			298		1.61	17355–17362.
50	LKK-CMP-1	467	273	1	2.22	Ind. Eng. Chem. Res.,
			298		1.38	2018 , <i>57</i> , 9254–9260.
51	PCTF-1	2235	273	1	3.22	Chem. Commun.,
			298		1.84	2013 , <i>49</i> , 3961–3963.
	PCTF-2	784	273		1.82	
-			298		0.99	
52	CPOP-8	1610	273	1	3.75	Macromolecules,
	CPOP-9	2440			4.13	2014 , <i>47</i> , 5926–5931.
	CPOP-10	1110			3.36	
53	PTA-1	52	273	1	0.84	<i>Chem. Commun.</i> , 2014 ,
	PTA-2	62	273		1.25	50, 8002-8005.
			303		0.59	
	PTA-3	450	273		1.48	

			303		0.77	
54	BILP-101	536	298	1	2.43	<i>Chem. Commun.</i> , 2015 , <i>51</i> , 13393–13396.
55	PAF-33	821	273	1	2.16	Polym. Chem., 2014, 5,
			298		1.25	2266–2272.
	PAF-33-NH ₂	370	273		1.19	
			298		0.75	
	PAF-33-COOH	445	273		1.94	
			298		1.21	
	PAF-34	953	273		2.5	
			298		1.39	
	PAF-34-OH	771	273		2.21	
			298		1.25	
	PAF-35	567	273		1.77	
			298		1.01	
56	Cu/BF ₄ /BIPLPL-1	380	273	1	2.57	J. Phys. Chem. C, 2015 , 119, 8174–8182.
57	BILP-15	448	273	1	2.68	Environ. Sci. Technol.,
			298		1.82	2015 , <i>49</i> , 4715–4723.
	BILP-16	435	273		2.7	
			298		1.83	
	BILP-15(AC)	862	273		3.43	
			298		2.29	
	BILP-16(AC)	843	273		3.46	
	, í		298		2.32	
58	TBILP-1	117	273	1	2.91	Macromolecules, 2014, 47,
			298		1.98	8328-8334.
59	BILP-10	787	273	1	4.02	J. Mater. Chem. A, 2014,
			298		2.52	2, 12492–12500.
	BILP-11	658	273		3.09	
			298		2	
	BILP-13	677	273		2.57	
			298		1.8	
60	NPOF-1	2062	298	1	1.52	J. Phys. Chem. C, 2016,
	NPOF-1-NO ₂	1295			2.52	120, 2592–2599.
	NPOF-1-NO ₂ (xs)	749			2	
	NPOF-1-NH ₂	1535			3.77	
	NPOF-1-NH ₂ (xs)	1074			2.93	
61	ALP-5	801	273	1	4.46	J. Mater. Chem. A, 2015,
			298		2.94	3, 20586–20594.
	ALP-6	698	273		3.42	
			298		2.17	
	ALP-7	412	273		2.5	
			298		1.55	
	ALP-8	517	273		3.05	
			298		1.97	

Entry	Material			uptake ol g ⁻¹)	CO ₂ /N ₂ selectivity	Reference
			273 K	298 K	-	
	TT-TCBz-b	1059	3.00	1.77	24.5 ^b	
1	TT-TCBz-g	848	3.11	1.92	65.0 ^b	This work
	CTF-1	746	3.00	1.41	20ª	Energy Environ. Sci., 2013, 6,
	CTF-1-600	1553	3.82	2.25	13ª	3684-3692.
2	FCTF-1	662	4.67	3.21	31 ^a	
	FCTF-1-600	1535	5.53	3.41	19 ^a	
3	F-DCBP-CTF-1	1574	5.98	3.82	31 ^b	<i>J. Mater. Chem. A.</i> , 2018 , <i>6</i> , 6370-6375.
4	CTF-3	1454	2.13	1.34	24.5ª	J. Mater. Chem. A., 2019 , 7, 17277 17282.
5	CQN-1g	1870	7.16	4.57	42.7 ^b	Angew. Chem., Int. Ed., 2019 , 58, 872-876.
6	BTAP-1	750.9	3.26	1.78	40 ^a	Chem, 2016 , <i>1</i> , 482-493.
	BTAP-2	445.6	2.55	2.23	52ª	
	BTAP-3	419.9	1.58	1.41	62ª	
7	BTLP-4	1011	4.3	2.7	41 ^a	J. Mater. Chem. A., 2017, 5, 258-
	BTLP-5	705	3.2	1.98	45ª	265.
	BOLP-4	698	3.1	2.0	79 ^a	
	BOLP-5	759	2.9	1.8	95ª	
8	BILP-4	1134	5.3	3.6	79 ^a	Chem. Mater., 2012, 24, 1511-
	BILP-5	599	2.9	2.0	95ª	1517.
9	Th-1	726	2.88	-	39ª	<i>Adv. Mater.</i> , 2012 , <i>24</i> , 5703-5707.
	Py-1	437	2.71	-	117ª	
	Fu-1	514	2.21	-	50ª	
10	HMC-1	855	5.8	-	72ª	ACS Sustain. Chem. Eng., 2016, 4,
	HMC-2	425	6.6	-	70 ^a	3697-3703.
	HMC-3	566	7.1	-	23ª	
11	Tt-POP-1	258	0.75	0.29	30 ^a	ACS Appl. Nano Mater., 2022, 5,
	Tt-POP-2	368	0.91	0.49	26ª	5302-5315.
	Tt-POP-3	974	0.78	0.45	25ª	
12	TAP1	474	2.2	1.4	94ª	ACS Appl. Polym. Mater., 2019, 1,
	TAP2	772	3.2	2.3	112ª	959-968.
10	TAP3	729	3.4	2.3	114 ^a	
10						

13

14

15

16

PFPOP-1

PFPOP-2

PFPOP-3

PMOP

TBOSBL1

TBOSBL2

TBOSBL3

COP-190H-en

570

630

530

1604

649

570

493

456

2.8

3.4

3.9

5.00

4.0

3.4

2.8

3.6

1.2

1.5

1.7

3.17

2.1

2.6

2.2

2.19

43.7^b 52.1^b

56.5^b

47.1ª

68ª

106ª

108^a

171^b

Table S4. Summary of the CO_2/N_2 : 15/85 (v/v) selectivity data of various POPs (a at 273 K and 1 bar, b at 298 K and 1 bar)

RSC Adv., 2015, 5, 71095-71101.

ACS Appl. Mater. Interfaces, 2018,

ACS Omega, 2020, 5, 4250-4260.

Micropor. Mesopor. Mat., 2021,

10, 15174-15182.

	COP-190H0-deta	72	2.7	1.79	121 ^b	328, 111450.
	COP-190H-CN	661	3.2	2.11	91 ^b	
	COP-190H-SH	773	3.6	2.28	76 ^b	
17	CPOP-1	2220	4.82	-	25ª	J. Am, Chem. Soc., 2012, 134,
						6084-6087.

Figure S9. ¹H NMR Spectrum of TT-TCBz

Figure S10. ¹³C NMR Spectra of TT-TCBz

Figure S11. Solid-state ¹³C NMR spectra of **TT-TCBz-c** (* mark represent the spinning sidebands)

References

¹ R. Maragani and R. Misra, *Tetrahedron Lett.*, 2013, **54**, 5399-5402.

² K. Smith, D. M. James, A. G. Mistry, M. R. Bye and D. J. Faulkner, *Tetrahedron*, 1992, **48**, 36, 7479-7488.

³ Y. Yuan, H. Hunag, L. Chen and Y. Chen, *Macromolecules*, 2017, **50**, 13, 4993-5003.

⁴Q. Chen, M. Luo, P. Hammershoj, D. Zhou, Y. Han, B. W. Laursen, C. G. Yan and B. H. Han, *J. Am. Chem. Soc.*, 2012, **134**, 14, 6084-6087.

⁵ Z. Li, H. Ishizuka, Y. Sei, M. Akita and M. Yoshizawa, *Chem. Asian J.*, 2012, **7**, 8, 1789-1794.