Supplementary Information

Detection of specific antibodies against SARS-CoV-2 spike protein via ultrasensitive bio-functionalized carbon-nitride reduced graphene oxide electrochemical immunosensing platform in real samples

Mohd. Abubakar Sadique^{1,2}, Shalu Yadav^{1,2}, Pushpesh Ranjan^{1,2}, Raghuraj Singh Chouhan^{3*}, Ivan Jerman⁴, Ashok Kumar⁵, Saurabh Saigal⁵, Sagar Khadanga⁵, Raju Khan^{1,2,*} and Avanish K. Srivastava¹

¹CSIR–Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India

³Jožef Stefan Institute, Jamova Cesta-39, Ljubljana - 1000, Slovenia

⁴National Institute of Chemistry, Hajdrihova 19, Ljubljana - 1000, Slovenia

⁵All India Institute of Medical Sciences (AIIMS), Bhopal - 462020, India

*Corresponding author Email: Raghuraj Singh Chouhan (<u>raghuraj.singh@ijs.si</u>) Raju Khan (<u>khan.raju@gmail.com</u>)

Experimental Section

Synthesis of Graphene oxide

Tour's method was used to synthesize graphene oxide (GO).¹ To elaborate, H_2SO_4 and H_3PO_4 were mixed in a 9:1 ratio. The above solution was kept in an ice bath keeping the temperature < 15 °C. To the above solution, a pre-mixed mixture of graphite powder and KMnO₄ in a 1:6 ratio was added gradually. The solution turned greenish-black, and the temperature was maintained below 20 °C to avoid any sudden bursts. The solution was kept at constant stirring for 1 h for the complete mixing into the solvent. Further, the temperature was raised to 50 °C and maintained by an oil bath for 24 h at constant stirring. After completion of the reaction, the mixture was kept cooling till an ambient temperature (27 °C). After oxidation, the color of the solution changed to brownish-black. To the above solution, milli-Q water and H₂O₂ were added to stop the reaction. The color of the solution changed to yellowish-brown indicating the formation of GO. The GO suspension was settled down and the sediments were washed thrice with each HCl, milli-Q water, and ethanol until the pH of the solution became neutral. The solution was collected through centrifugation after the removal of unwanted materials. The obtained solution was dried in a hot air oven at 60 °C, weighed, and stored for experimental use.

Cleaning of Glassy carbon electrodes

The working electrodes (Glassy carbon electrodes (GCEs)) were cleaned by a standard cleaning procedure. Firstly, The GCEs were sonicated in ethanol. Further, the electrodes were polished with alumina slurry of 0.3 and 0.05 μ m alternatively for 10 min. At last, the electrodes were sonicated in milli-Q water to remove alumina and other impurities. The electrodes were air-dried and kept in a desiccator before modification with nanomaterials.

Characterization

Atomic Force Microscopy

To evaluate the surface uniformity and thickness of C_3N_4 nanosheets, atomic force microscopy (AFM) was carried out. The optical image of the surface roughness is seen in **Fig. S1A** at the scale of 1 µm. The height profile of the nanosheets in **Fig. S1B** suggests the film thickness be around 2-3 nm. Since the thickness of the monolayer of C_3N_4 is about 0.3-0.4 nm, the synthesized C_3N_4 would consist of 6-8 layers.²

Fig. S1. (A) AFM analysis at 1 µm scale and (B) the height profile of C₃N₄ nanosheets.

X-ray photoelectron spectroscopy (XPS)

The base material C_3N_4 has been characterized by XPS for analysis of the binding energy of the carbon and nitrogen atoms involved in the formation of graphitic C_3N_4 nanosheets. In the XPS spectra (**Fig. S2A**) concerning the binding energy of N 1s, the obtained peaks at 389.72, 399.72, and 400.97 eV correspond to sp² bonded N atom in the triazine rings, amino-functional group (C–N–H), and tertiary nitrogen N atom in N–(C)₃ respectively. Moreover, in the XPS spectra (**Fig. S2B**) concerning the binding energy of C 1s, two peaks around 284.77 and 288.15 eV correspond to sp² C–C bonds and sp² C in an N-containing aromatic ring, respectively.³ The XPS spectra suggest a C and N intermixed backbone structure of C_3N_4 nanosheets. In **Fig. S2C**, survey spectra show the distinctive presence of N 1s peak around 400 eV and C 1s peak around 280 eV. The absence of the O 1s peak suggests that there are no oxygen-containing impurities in the compound and the synthesized C_3N_4 nanosheets are free from any surfaceadsorbed oxygen as well.

Fig. S2. XPS analysis of (A) N 1s region, (B) C 1s region of C_3N_4 nanosheets, and (C) Survey spectra of C_3N_4 nanosheets.

Morphological analysis of C₃N₄

The SEM image of the C_3N_4 nanosheets shown in **Fig. S3** depicts the flaky nature of C_3N_4 nanosheets. The synthesized C_3N_4 nanosheets have the morphology of sheets in nanoscale dimensions and dense agglomeration when seen at the 2 µm magnification. The morphological analysis suggests that C_3N_4 nanosheets have a good capability to be utilized as a two-dimensional nanomaterial for electrode modification.

Fig. S3. SEM image of C_3N_4 nanosheets at 2 μm magnification.

Electrochemical studies

Randles Circuit Fit

Fig. S4: Randles Fitted Circuit for C₃N₄.⁴

Scan Rate studies

The electrochemical reversibility of the synthesized bio-functionalized C_3N_4/RGO nanocomposite and fabricated immunosensor was analyzed by scan rate studies. The CV technique was used where variation in scan rate was done from 10 to 100 mV s⁻¹ in PBS (pH 7.4) for both bio-functionalized C_3N_4/RGO nanocomposite and immunosensor respectively as shown in **Fig. S5(A, B)**. The anodic and cathodic peak currents increase linearly with an increase in scan rates, corresponding shifts are observed in anodic and cathodic peak potentials as well.

A linear relationship between anodic ${}^{I_{p_{A}}}$ and cathodic peak currents ${}^{I_{p_{C}}}$ vs. square root of scan rate $(v^{1/2})$ for the bio-functionalized C₃N₄/RGO nanocomposite as well as immunosensor was studied by their respective regression curves.

$$I_{p_A C_3 N_4 / RGO/Chi}(\mu A) = +7.05 \times v^{1/2} + 6.57, R^2 = 0.996$$
 (S1)

$$I_{p_{C}C_{3}N_{4}/RGO/Chi}(\mu A) = -8.15 \times v^{1/2} - 6.72, \qquad R^{2} = 0.999$$
(S2)

$$I_{p_A Immunosensor} (\mu A) = + 6.22 \times v^{1/2} + 9.25, \quad R^2 = 0.998$$
 (S3)

$$I_{p_{C} Immunosensor} (\mu A) = -7.37 \times v^{1/2} -4.65, \qquad R^{2} = 0.987$$
 (S4)

As seen from the regression curves from the insets of **Fig. S5(A, B)**, the reaction kinetics follow a diffusion-controlled transfer of electrons.⁵ Moreover, the high value of the correlation coefficient (R^2) suggests the quasi-reversible nature of the modified electrodes. The corresponding equations show excellent linearity.

Fig. S5. Scan rate study of (A) bio-functionalized C_3N_4/RGO nanocomposite, and (B) fabricated immunosensor in 0.1 M PBS containing 0.1 M KCl and 5 mM ferri/ferrocyanide redox solution, pH=7.4.

S.N	Sensing	Target	Detection	Sample	Limit of	Linear	Refere
0.	platform	Analyte	Technique		Detectio	Range	nce
					n		
1.	Aptamer/chitos	SARS-	PEC	Human	0.12 nM	0.5-32	6
	an/CdS QDs-	CoV-2		saliva		nM	
	gC ₃ N ₄ /ITO	RBD					
2.	g-C ₃ N ₄	SARS-	ECL	Human	0.18 fM	1 fM to	7
	nanosheets and	CoV-2		throat		10 nM	
	Ru–SiO ₂ @folic	virus		swab			
	acid	(RdRp					
	nanomaterials	gene)					
3.	(Bi_2WO_6/Bi_2S_3)	SARS-	DPV	Saliva	3 fg mL ⁻¹	0.01 to 1	8
	and (g-	CoV-2				pg mL ⁻¹	
	C ₃ N ₄ /Au/WO ₃)	N-					
		protein					
4.	PdNPs/g-	SARS-	PEC	Artificial	1 fg mL ⁻¹	1 fg mL ⁻¹	9
	C ₃ N ₄ –S /ST/	CoV-2		saliva		to 1000	
	FTO	spike				pg mL ⁻¹	
5.	C ₃ N ₄ -Au NPs	SARS-		ssDNA	2.2 fmol	1 to	10
		CoV-2		saliva	L-1	10000	
		protein		samples		fmol L ⁻¹	
6.	bio-	SARS-	DPV	Serum	1.73 ag	100 ag	This
	functionalized	CoV-2			mL ⁻¹	mL ⁻¹ to	Work
	C ₃ N ₄ /RGO	antibodie				100 ng	
	nanocomposite	s				mL ⁻¹	

Table S1: A comparative analysis of C_3N_4 -based biosensors related to the SARS-CoV-2 virus.

*PEC= Photoelectrochemical; ECL= Electrochemiluminescence; DPV= Differential pulse Voltammetry

References

- 1 D. C. Marcano, D. v Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, *American Chemical Society*.
- 2 S. Zhang, N. T. Hang, Z. Zhang, H. Yue and W. Yang, *Nanomaterials*, 2017, 7, 1–11.
- 3 R. S. Chouhan, G. Žitko, V. Fajon, I. Živković, M. Pavlin, S. Berisha, I. Jerman, A. Vesel and M. Horvat, *Sensors (Switzerland)*, , DOI:10.3390/s19153432.
- 4 A. L. Lorenzen, A. M. dos Santos, L. P. dos Santos, L. da Silva Pinto, F. R. Conceição and F. Wolfart, *Electrochim Acta*, 2022, **404**, 139757.
- 5 R. Devi, S. Gogoi, H. S. Dutta, M. Bordoloi, S. K. Sanghi and R. Khan, *Nanoscale Adv*, 2020, **2**, 239–248.
- 6 M. Amouzadeh Tabrizi, L. Nazari and P. Acedo, *Sens Actuators B Chem*, 2021, 345, 130377.
- 7 T. Yin, Y. Ye, W. Dong and G. Jie, *Biosens Bioelectron*, 2022, **215**, 114580.
- 8 C. Karaman, B. B. Yola, O. Karaman, N. Atar, İ. Polat and M. L. Yola, *Mikrochim Acta*, 2021, **188**, 425.
- 9 C. N. Botelho, S. S. Falcão, R.-E. P. Soares, S. R. Pereira, A. S. de Menezes, L. T. Kubota, F. S. Damos and R. C. S. Luz, *Biosens Bioelectron X*, 2022, **11**, 100167.
- 10 L. G. da S. Catunda, T. Martimiano do Prado, T. R. de Oliveira, D. J. Almeida dos Santos, N. O. Gomes, D. S. Correa, R. C. Faria and S. A. S. Machado, *Electrochim Acta*, 2023, 451, 142271.