Supporting Information: Design and Screening of B-N Functionalized Non-fullerene Acceptors for Organic Solar Cells via Multiscale Computation

Rudranarayan Khatua and Anirban Mondal*

Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India

E-mail: amondal@iitgn.ac.in

FTAZ

Figure S1: Chemical structure of the FTAZ donor. Optimization of the donor polymer was performed at B3LYP/6-31G(d,p) level of theory considering one monomer unit.

Figure S2: Correlation plot between the rate of charge transfer (k_h / k_e) and electronic coupling (J_h / J_e) for all the investigated eight thiophene systems: (a) holes and (b) electrons. The color of each point represents the charge carrier mobility (μ_h / μ_e) value.

Table S1: Comparison between predicted absorption wavelength (λ) and electron mobility (μ) with experimental measurements. λ values are obtained at B3LYP/6-31G(d,p) level of theory. μ was computed following the protocol described in Section 2.2 of the main manuscript.

Compounds	$\lambda_{\rm sim} \ [{\rm nm}]$	$\lambda_{\rm exp} \ [{\rm nm}]$	$\mu_e \; (sim) \; (cm^2 \; V^{-1} s^{-1})$	$\mu_e (\exp) (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$
INIC3	736	710 ^{S1}	$3.45 \ge 10^{-2}$	$1.70 \ge 10^{-4} \frac{\text{S1}}{\text{S1}}$
BCDT-4F	756	733 ^{S2}	$4.89 \ge 10^{-2}$	$2.09 \ge 10^{-4} \frac{\text{S2}}{\text{S2}}$
BCDT-4Cl	769	748^{22}	$8.50 \ge 10^{-2}$	$3.54 \ge 10^{-4 \text{ S2}}$

Table S2 of the supplementary information is provided in a separate excel sheet.

References

- (S1) Dai, S.; Zhao, F.; Zhang, Q.; Lau, T.-K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W., et al. Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 2017, 139, 1336–1343.
- (S2) He, C.; Li, Y.; Li, S.; Yu, Z.-P.; Li, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Chen, H. Nearinfrared electron acceptors with unfused architecture for efficient organic solar cells. ACS applied materials & interfaces 2020, 12, 16700–16706.