Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Electronic supplementary information for

Promising Ce single-atom-dispersed nitrogen-doped graphene catalysts for hydrogen evolution reaction

Sunny Yadav, Vandung Dao, Wenmeng Wang, Kai Chen, Chiyeop Kim, Gyu-Cheol Kim, and In-Hwan Lee*

Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. E-mail: <u>ihlee@korea.ac.kr</u>

S. No.	Title	Page No.		
1	Turnover Frequency	S3		
2	Schematic for Ce/NGr			
3	EDS Spectrum for free-standing NGr			
4	EDS Spectrum for Ce/NGr			
5	HR-TEM images	S7		
6	STEM images of NGR and Ce/NGr	S8		
7	HER, Mass density and EIS measurements of NGr, 1Ce/NGr, and	S9		
	3Ce/NGr			
8	CV cycle of Pt/C, NGr, 1Ce/NGr, and 3Ce/NGr	S10		
9	I-t graph of NGr and 3Ce/NGr	S11		
10	Electrochemical measurement of Ni foam, NGr, 1Ce/NGr and	S12		
	3Ce/NGr using graphite rod			
11	CV cycle of NGr, 1Ce/NGr, and 3Ce/NGr	S13		
12	FE-SEM, STEM, and XPS data after stability test of 1Ce/NGr and	S14		
	3Ce/NGr.			
13	FE-SEM images of Ce/NGr after stability test	S15		
14	EDS Spectrum for free-standing NGr after stability test	S16		
15	EDS Spectrum for free standing Ce/NGr after stability test	S17		
16	Comparison of HER active catalysts	S18		
17	References	S19		

Table of Contents

Turnover Frequency (TOF)

The amount of oxygen/hydrogen evolved per unit of time of the catalyst can be determined by the below expression,

 $TOF = j \times N_A / n \times F \times \tau$ equation 1

where, j = current density, N_A = Avogadro number, F = Faraday constant (96 485 C mol-1), n = Number of electrons (For OER, n = 4 and HER, n = 2), Γ = Surface concentration. Determination of Surface concentration from the redox feature of CV:

The calculated area associated with the reduction of Ce4+/Ce3+ of 1Ce/NGr = 0.0002764VA Hence, the associated charge is = 0.0002764VA / 0.1 Vs-1

Now, the number of electron transferred is = $0.002764 \text{ C} / 1.602 \times 10-19 \text{ C}$

$$= 1.725 \times 10^{16} \text{ C}$$

Since the reduction of Ce^{4+}/Ce^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of surface-active sites.

Hence, the number of Ce participate in HER is = 1.725×10^{16} C

The TOF values for 1Ce/NGr, 3Ce/NGr, and NGr were calculated from the redox feature, and the calculated values are 3.16 sec-1, 3.0 sec-1, and 0.238 sec-1.

2. Schematic for Ce/NGr

Fig. S1. Schematic of preparation process of rare-earth Ce single atom dispersed on NGr (Ce/NGr).

3. EDS Spectrum for free-standing NGr

Fig. S2. EDS Spectrum for free standing NGr showing presence of C, N, O.

4. EDS Spectrum for Ce/NGr

Fig. S3. EDS Spectrum for Ce/NGr showing presence of Ce, C, N and O

5. HR-TEM images

Fig. S4. (a) High-resolution TEM images showing (a) Free-standing nitrogen-doped graphe ne (NGr) (b) Free-standing nitrogen-doped graphene (NGr) with Silica doping (c) Silica co vered with layered NGr (d) Cavities after removal of silica.

6. STEM images of NGR and Ce/NGr

Fig. S5. STEM Images showing densely distributed Ce single atoms on NGr in 1Ce/NGr.

Fig. S6. STEM Images showing densely distributed Ce single atoms on NGr in 3Ce/NGr.

7. HER, Mass density, and EIS measurements of NGr, 1Ce/NGr, and 3Ce/NGr

Fig. S7. (a) HER polarization curve for Pt/C and 1Ce/NGr, (b) mass density of Pt/C and 1Ce

Fig. S8. CV cycle at different scan rates (a) Pt/C, (b) Ni foam, (c) NGr, (d) 1Ce/NGr, and (e)

9. I-t graph of NGr and 3Ce/NGr

Fig. S9. (a) I-t graph of NGr, and (b) 3Ce/NGr at different potentials.

10. Electrochemical measurement of Ni foam, NGr, 1Ce/NGr, and 3Ce/NGr using a graphite rod

Fig. S10. (a) HER polarization curves for Ni foam, NGr, 1Ce/NGr and 3Ce/NGr, (b) tafel plot of Ni foam, NGr, 1Ce/NGr and 3Ce/NGr, (c) extraction of the double layer capacitance (C_{dl}) of Ni foam, NGr, 1Ce/NGr and 3Ce/NGr, (d) CV cycle of Ni foam, NGr, 1Ce/NGr and 3Ce/NGr at 100mV/s us

Fig. S11. CV cycle at different scan rates (a) Ni foam, (b) NGr, (c) 1Ce/NGr, and (d) 3Ce/NGr.

12. Fe-SEM, STEM, and XPS data after stability test of 1Ce/NGr and 3Ce/NGr

Fig. S12. (a) FE-SEM images of NGr after stability test, (b) porous structure of Ce/NGr af ter stability test, (c) aberration-corrected HAADF-STEM image after stability test for 1Ce/NGr, and (d) 3Ce/NGr, (e) elemental mapping of Ce, C and N after stability test, (f) N 1s f

13. FE-SEM images of Ce/NGr after stability test

Fig. S13. FE-SEM images of Ce/NGr after stability test.

14. EDS Spectrum for free-standing NGr after stability test

Fig. S14. EDS Spectrum for free standing NGr after stability test showing presence of

15. EDS Spectrum for free standing Ce/NGr after stability test

Fig. S15. EDS Spectrum for free standing Ce/NGr after stability test.

16. Comparison of HER active catalysts

Catalysts	Overpotential (mV, at 10 mA/ cm ²)	Tafel slope (mV/dec)	electrolyte	Ref.
Ce/NGr	180	83	1 M KOH	This work
Co@CNT/CeO ₂	181	118	1 М КОН	Int. J. Hydrog. Energy, 2020, 45, 3948-3958. [S1]
3D-rGO-CeO ₂	192	112.8	1 M KOH	Eur. J. Inorg. Chem., 2018, 3952-3959. [S2]
Co _{NC-SA} /N*-C	194	91.9	1 M KOH	ACS Catal., 2022, 12, 10771-10780. [S3]
Co/CeO ₂ /Co ₂ P/CoP@NC	195	66	1 М КОН	Int. J. Hydrog. Energy, 2020, 45, 30559- 30570. [S4]
Ni-1T MoS ₂	199	52.7	1 М КОН	Small, 2022, 18, 2107238. [S5]
Co-1T-MoS ₂	261	88.5	1 М КОН	Small, 2022, 18, 2107238 [S5]
Fe-1T-MoS ₂	269	168	1 М КОН	Small, 2022, 18, 2107238. [S5]
$g-C_3N_4/CeO_2/Fe_3O_4$	310	102	1 M KOH	Chem Cat Chem, 2018, 10, 5587. [S6]
Pr2CeO3	374	110	1 М КОН	Ceram. Int., 48, 13, 2022. [S7]

Table S1. Comparison of HER active catalysts

References

[S1] Yupeng Xiao, Wenju Wang, Qiao Wu, Int. J. Hydrog. Energy, 2020, 45, 3948-3958.

[S2] Liu, M., Ji, Z., Shen, X., Zhou, H., Zhu, J., Xie, X., Song, C., Miao, X., Kong, L. and Zhu, G. (2018), *Eur. J. Inorg. Chem.*, 2018, 3952-3959.

[S3] Minmin Wang, Kaian Sun, Wanliang Mi, Chao Feng, Zekun Guan, Yunqi Liu, and Yuan Pan, *ACS Catal.*, 2022, *12*, 10771-10780.

[S4] Xue-Zhi Song, Qiao-Feng Su, Shao-Jie Li, Gui-Chao Liu, Nan Zhang, Wen-Yu Zhu, Zi-Hao Wang, Zhenquan Tan, *Int. J. Hydrog. Energy*, 2020, 45, 30559-30570.

[S5] Wang, G., Zhang, G., Ke, X., Chen, X., Chen, X., Wang, Y., Huang, G., Dong, J., Chu, S., Sui, M., *Small*, 2022, 18, 2107238.

[S6] J. Rashid, N. Parveen, T. u. Haq, A. Iqbal, S. H. Talib, S. U. Awan, N. Hussain, M. Zaheer, *Chem Cat Chem*, 2018, 10, 5587.

[S7] Tauseef Munawar, Faisal Mukhtar, Muhammad Shahid Nadeem, Sumaira Manzoor, Muhammad Naeem Ashiq, Muhammad Riaz, Sana Batool, Murtaza Hasan, Faisal Iqbal, Ceram. Int., 2022, 48, 19150-19165.