Electronic Supplementary Immaterial (ESI)

Synthesis of surfactant assisted zero-dimensional iron nanomaterials for cellobiose

hydrolysis

A Table of content entry

Table S1: Comparing results of few different nanomaterials synthesized using the same method for cellobiose hydrolysis at 120 ^{0}C

Nanomaterials	Calcination	%Conversion	%Yield of	%Yield of
	temp/ ⁰ C		Glucose	HMF
FeCl ₃	400	40	40	-
FeCTB-200	200	50	50	50
FeCTB-300	300	60	60	40
FeCTB	400	80	40	60

Table S2: Hydrolysis of cellobiose over FeCTB nanomaterial at different temperature

Nanomaterials	Reaction	%Conversion	%Yield of	%Yield of
	temperature / ⁰ C		Glucose	HMF
FeCTB	120	80	40	60
FeCTB	200	80	30	70
FeCTB	250	85	30	70

gure S1: Particle size distribution of FeCTB by dynamics light scattering (DLS)

Fi

Figure S2: Ammonia Temperature Program Desorption (NH₃-TPD) of FeCTB up 600 ^oC.

Figure S3: The H₂-TPR profile of FeCTB nanomaterial up 800 °C.

Figure S4: The UV-Visible spectrum of hydrolyzed product of cellobiose