Supplementary information

Efficient degradation of Orange G dye using Quartz-Sand@Polythiophene composite for Peroxymonosulfate Activation: A sustainable approach for advanced oxidation processes

Asma Amjlef^{1*}, Abdellah Ait El Fakir¹, Salaheddine Farsad¹, Aboubakr Ben Hamou¹, Ayoub Chaoui¹, Saïd Et-Taleb^{1*}, Noureddine El Alem¹

¹ Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

*Corresponding author: <u>amjlef.asma@gmail.com</u>; <u>said.ke.ettaleb@gmail.com</u>.

Text S1: Chemical reagent

The quartz sand used in this work was sourced from the southern of Morocco (Assa region). The QS was collected, crushed, and sieved to a particle size of 70µm. Subsequently, it underwent a cleaning process with distilled water and was then dried at a temperature of 60°C.

Thiophene (C₄H₄S, 99%), Chloroform (CHCl₃), anhydrous iron chloride (FeCl₃), Acetone (C₃H₆O), Sodium hydroxide (NaOH, 98%), Hydrochloric acid (HCl, 35%), Orange G, Tert-butanol ((CH₃)₃COH, 99.5%), Ethanol (C₂H₅OH, 99.8%), P-benzoquinone (C₆H₄(=O)₂, 98%), L-Histidine (C₆H₉N₃O₂,99%) were obtained from Sigma Aldrich (St. Louis, MO, USA).

Text S2: Characterization

Surface chemistry of QS, and QS@Ch-Glu before and after adsorption was carried out by Fouriertransform infrared spectra (FTIR) using a Shimadzu spectrometer equipped with a Jasco ATR PRO ONE module, the spectra were scanned at resolution of 16 cm-1. Structural characterization of QS, and QS@Ch-Glu was carried out by X-ray diffraction (XRD) (Bruker D8 Advance Twin, λ (K α Cu) =1.5418 Å radiation, at voltage of 40 kV and current of 40 mA). Surface morphology and elemental content of QS, and QS@Ch-Glu before and after adsorption were observed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) analysis (SEM, JEOL, JSM-IT200). Radicals generated during the PMS activation process were detected on an electron paramagnetic resonance (EPR) spectrometer (EMX-plus X-band spectrometer (Bruker)).

Fig. S1: The pHpzc of QS@PTh.

Fig. S2: Arrhenius plot for the OG dégradation using QS@PTh as acatalyst for PMS activation.