Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

4D-printed hydrogels based on poly(oxazoline) and poly(acrylamide) copolymers by

stereolithography

Thomas Brossier, Michel Habib, Belkacem, Tarek Benkhaled, Gael Volpi, Vincent Lapinte^{*}, Sebastien Blanquer^{*}

Supplementary Table

Hydrogels	G' (Pa)	ξ (Å)
PMOx ₂₀ - <i>net</i> -PNIPAM ₄	44	473
PMOx ₂₀ - <i>net</i> -PNIPAM ₁₀₀	29	542
PiPrOx ₂₀ - <i>net</i> -PAM ₄	173	299
PiPrOx ₂₀ -net-PAM ₁₀₀	115	342

Table S1. Storage modulus in the linear viscoelastic domain and mesh size for the hydrogels at equilibrium at 20°C.

Supplementary Figures

Figure S1. ¹H NMR spectrum of the synthesized 1,6-hexaneditosylate (HDOTs).

Figure S2. Size Exclusion Chromatography spectrum and ¹H NMR spectrum of the synthesized poly(2-isopropyl-2-oxazoline) (PiPrOx), $DP_n = 20$.

Figure S3. Size Exclusion Chromatography spectrum and ¹H NMR spectrum of the synthesized poly(2-methyl-2-oxazoline) (PMOx), $DP_n = 20$.

Figure S4. Picture of the swollen thermo-responsive hydrogels $PiPrOx_{20}$ -*net*- PAM_4 (left) and $PMOx_{20}$ -*net*- $PNIPAM_{100}$ (right) at the equilibrium at 20°C.

Figure S5. Diffusion mechanism of the thermo-responsive hydrogels $PiPrOx_{20}$ -*net*- PAM_4 and $PMOx_{20}$ -*net*- $PNIPAM_{100}$ using the Ritger-Peppas model.

Figure S6. Illustrative picture of the thermo-sensitivity of the PiPrOx₂₀-*net*-PAM₄, with the hydrogel in this swollen state at 20 °C (left), where the beads can fall down through the device, and the hydrogel in the collapsing state at 50 °C (right), where the beads cannot go through the device.

Supplementary Movies

Movie S1. Mechanical performance of 4D printed device based on $PMOx_{20}$ -net-PNIPAM₁₀₀ in swollen state.

Movie S2. Mechanical performance of 4D printed device based on PiPrOx₂₀-*net*-PAM₄ in swollen state.

Movie S3. 4D printed device based on $PiPrOx_{20}$ -net- PAM_4 with golden beads release.