The Emergence of MnFe$_2$O$_4$ Nanospheres-based Humidity Sensor: A Methodical Investigation by Scanning Kelvin Probe and its Deployment in Multitudinous Applications

Rahul S. Ghugea, Manish D. Shindeb, Hajeeesh Kumar Vc, Sudhir S. Arbujp, Velappa Jayaraman Suryad,e, Sunit B. Raneb*, Corrado Di Natalef, Yuvaraj Sivalingama,g,*

aLaboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

bCentre for Materials for Electronics Technology, Off Pashan Road, Panchawati, Pune-411008

cFunctional coatings and materials laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

dNovel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

eNew Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai 980-8579, Miyagi, Japan

fDepartment of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy

gSensors Lab, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

*Corresponding author e-mail: yuvaraj.sivalingam@kaust.edu.sa, yuvarajs2@srmist.edu.in, sunit@cmet.gov.in
Figure S1. Schematic illustration of Scanning Kelvin Probe System (SKP) measurement setup.

Figure S2. (a) Static sensing test at various humidities, (b) Dynamic and static sensing response curves, (c) Static hysteresis curve.
Figure S3. Static sensing test up to 3 cycles for 43%, 75% and 85 %RH. Here the baseline relative humidity is 11%.

Figure S4. Dynamic response study under influence of different components.

S5: Device fabrication process for baby diaper

For real-time applicability, the sensor was encapsulated in PDMS to avoid direct contact with the objects. The silicone elastomer base and curing agent (10:1) were mixed for 5 min until homogeneous solution was obtained which was then kept in the vacuum desiccator to
remove air bubbles. The resultant PDMS solution was poured into a petri dish to immerse the electrode and was heated at 60°C for 1 h. Furthermore, formed dense jelly type PDMS was peeled out from the dish and PDMS from extra edges as well as on the electrode portion was cut to evoke the electrode region (visual representation given in S1). After cutting, the formed PDMS walls were about ~1mm thick, enough for isolation from the wet object. Finally, the electrode was coated by MFO and heat treated at 150 °C in an oven for 1 h.

![Schematic of process of fabrication of device for baby diaper alarm.](image)

Figure S5. Schematic of process of fabrication of device for baby diaper alarm.

Table S1: Comparison to other ferrite humidity sensor

<table>
<thead>
<tr>
<th>Sr No.</th>
<th>Material</th>
<th>Measurement</th>
<th>Testing range</th>
<th>Hysteresis</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cd<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x=0.5)</td>
<td>Resistance</td>
<td>25-95</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Sn-NiFe<sub>2</sub>O<sub>4</sub></td>
<td>Impedance</td>
<td>10-95</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>MgFe<sub>2</sub>O<sub>4</sub></td>
<td>Impedance</td>
<td>0-90</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.3 mol% Pr doped MgFe<sub>2</sub>O<sub>4</sub></td>
<td>Impedance</td>
<td>10-90</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CuFe<sub>2-x</sub>Bi<sub>x</sub>O<sub>4</sub> (x= 0.03)</td>
<td>Resistance</td>
<td>11-97</td>
<td>3%</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Li – CuFe<sub>2</sub>O<sub>4</sub></td>
<td>Resistance</td>
<td>10-99</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Mn<sub>0.95</sub>Bi<sub>0.05</sub>Fe<sub>2-x</sub>Ce<sub>x</sub>O<sub>4</sub> (x= 0.03)</td>
<td>Resistance</td>
<td>11-97</td>
<td>3%</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>#</td>
<td>Composition</td>
<td>Property</td>
<td>Range</td>
<td>Other</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bi${0.1}$CuFe${1.9}$O$_4$</td>
<td>Resistance</td>
<td>10-90</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Ni${0.7}$Mg${0.3}$Y$_{0.1}$Fe$_1$O$_4$</td>
<td>Resistance</td>
<td>15-90</td>
<td>7%</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>LixCo${1-x}$Fe$_2$O$_4$ (x=0.5)</td>
<td>Resistance</td>
<td>10-90</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>MnFe$_2$O$_4$</td>
<td>Resistance</td>
<td>11-95 (static)</td>
<td>5%</td>
<td>Baby diaper alarm, Skin humidity, etc.</td>
<td>Present work</td>
</tr>
</tbody>
</table>

Movie S1: Baby diaper alarm

References

