Characterization of FeS₂ pyrite microcrystals synthesized in different flux media

Katriin Kristmann, *a Taavi Raadika, Mare Altosaara, Mati Danilsona, Jüri Krustoka, Peeter Paaverb, Yuriy Butenko^c

^a. Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia

^{b.} Institute of Ecology and Earth Sciences, Tartu University, Ülikooli 18, 50090, Tartu, Estonia

^{c.} European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk, the Netherlands

Supporting information

Energy dispersive X-ray spectroscopy (EDX) data

The chemical composition of FeS₂ powder crystals was determined by energy dispersive X-ray spectroscopy (EDX) using Bruker Esprit 1.8 system. EDX data of the pyrite materials considered in this manuscript:

FeS₂ synthesized with no flux (3N FeS precursor)

FeS₂ synthesized with potassium iodide flux (3N FeS precursor)

Spectru	m :				
Element	Series	unn. C	norm. C	Atom. C	Error
		[wt.%]	[wt.%]	[at.%]	[%]
Iron	K-series	46,98	46,96	33 , 70	1,3

FeS₂ synthesized with lithium iodide (3N FeS precursor)

Spectrum:

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error [%]
Sulfur Iron	K-series K-series	50,88 45,40	52,85 47,15	66,12 33,88	1,8 1,2
	Total:	96,28	100,00	100,00	
80-					
70-					
60-					
50-					
40	181		Fe		
30-					
20-					
		4 6	8	10	12

FeS₂ synthesized with cesium iodide (3N FeS precursor)

Spectrum:

Element	Series	unn. C [wt.%]	norm. C [wt.응]	Atom. C [at.%]	Error [%]
Sulfur Iron	K-series K-series	50,77 44,89	53,08 46,92	66,33 33,67	1,8 1,2
	Total:	95 , 66	100,00	100,00	

FeS₂ synthesized with sodium polysulfide (3N FeS precursor)

Spectrum:

Element	Series	unn. C	norm. C	Atom. C	Error
		[wt.%]	[wt.%]	[at.%]	[%]
Iron	K-series	45,80	46,49	33,28	1,2
Sulfur	K-series	52,73	53 , 51	66 , 72	1,9
	Total:	98,53	100,00	100,00	

 $\ensuremath{\mathsf{FeS}}_2$ recrystallized with 4x potassium iodide (3N FeS precursor)

Spectrum:

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error [%]
Sulfur Iron	K-series K-series	51,08 45,39	52,95 47,05	66,21 33,79	1,9 1,2
	Total:	96,47	100,00	100,00	

FeS₂ recrystallized with 10x potassium iodide (3N FeS precursor)

Spectrum:

FeS₂ synthesized with potassium iodide flux (4N FeS precursor)

Spectrum:

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error [%]
Sulfur Iron	K-series K-series	50,54 45,08	52,86 47,14	66,13 33,87	1,8 1,2
	Total:	95,62	100,00	100,00	

Impurities in sulfur

Impurities reported in the 5N sulfur that is used in the experiments of this manuscript are obtained from the chemical data sheet.

Element	Mass%
Aluminum	2-4*10 ⁻⁵
Bitumen	2*10 ⁻³
Gallium	1*10 ⁻⁶
Iron	1-3*10 ⁻⁵
Indium	1*10-6
Cobalt	3*10 ⁻⁶
Manganese	1*10-6
Vask	2-4*10-6
Molybdenum	1*10 ⁻⁶
Arsenic	5*10 ⁻⁶
Nickel	1-3*10 ⁻⁶
Tin	1*10 ⁻⁶
Lead	2-4*10 ⁻⁶
Selenium	2*10-4
Silver	1*10 ⁻⁶
Tellurium	5*10 ⁻⁶
Phosphorus	1*10-5
Chloride	2*10-5

Table 1. Impurities in the sulfur precursor as stated by the supplier.

Supporting data from the inductively coupled plasma mass spectroscopy (ICPMS) analyses

Impurities concentrations in the pyrite crystals were determined by the inductively coupled plasma mass spectroscopy (ICPMS). 0.1 g of sample material was dissolved with Anton Paar Multiwave PRO microwave digestion system in NXF100 vessels (PTFE/TFM liner) using an acid mixture of 8 mL of HNO₃ (65%; Carl Roth, ROTIPURAN[®] Supra) and 2 mL of H₂O₂ (30%; Carl Roth, ROTIPURAN[®]). Samples were digested at 230 °C and pressures between 45-50 bar. After dissolution, the samples were diluted with 2% HNO₃ solution. Elemental impurities were measured using Agilent 8800 ICPMS/MS. ⁷Li, ¹²⁷I and ¹³³Cs were measured in NoGas mode and ²³Na, ³⁹K, ⁴⁰Ca, ⁵⁹Co using He collision gas on mass. ⁵²Cr, ⁶⁰Ni, ⁶³Cu were measured in O₂ mode as M¹⁶O⁺ reaction products. Indium was used as internal standard element added online via mixing T and NIST 1643f, which were used as references for quality control.

The FeS presursors used in the syntheses were analyzed by ICPMS and the results in mg/kg were obtained from the measurements:

Material	Li mg/kg	Cr mg/kg	Cu mg/kg	Co mg/kg	Ni mg/kg	Cs mg/kg
FeS 3N precursor	1,92	185,11	22,57	119,99	223,65	0,02
FeS 4N precursor	5,72	216,22	333,28	29,01	203,61	0,31

The calculated results in at/cm³ were used in the Discussion of the article.

Material	Li at/cm ³	Cr at/cm³	Cu at/cm³	Co at/cm ³	Ni at/cm ³	Cs at/cm ³
FeS 3N precursor	8,3* 10 ¹⁷	1*10 ¹⁹	1,1*10 ¹⁸	6,1*10 ¹⁸	1,2*10 ¹⁹	4,5*10 ¹⁴
FeS 4N precursor	2,5*10 ¹⁸	1,3*10 ¹⁹	1,6*10 ¹⁹	1,5*10 ¹⁸	1*10 ¹⁹	7*10 ¹⁵

All data from the ICPMS measurements is brought in the following table:

	Li	+/- error	Cr	+/- error	Со	+/- error	Ni	+/- error	Cu	+/- error	Cs	+/- error	I	+/- error
	at/cm³	at/cm ³	at/cm³	at/cm ³	at/cm³	at/cm ³	at/cm ³	at/cm ³	at/cm ³	at/cm³	at/cm ³	at/cm ³	at/cm ³	at/cm ³
FeS (3N) prec.	8,33E+17	3,90E+16	1,07E+19	2,78E+17	6,13E+18	1,23E+16	1,15E+19	2,87E+17	1,07E+18	6,73E+16	4,53E+14	0,00E+00	3,60E+17	9,72E+15
FeS (4N) prec.	2,48E+18	1,30E+17	1,25E+19	1,75E+17	1,48E+18	3,06E+15	1,04E+19	1,88E+17	1,58E+19	8,21E+17	7,02E+15	0,00E+00	8,22E+17	1,40E+16
FeS ₂ (no flux)	0	C	6,93E+18	1,39E+17	3,32E+18	6,98E+16	6,91E+18	1,94E+17	6,93E+17	4,23E+16	1,37E+15	8,38E+13	1,39E+16	6 2,36E+14
FeS ₂ (Na ₂ S _x flux)	0	C	5,42E+18	5,96E+16	5 2,29E+18	7,55E+16	5,44E+18	9,8E+16	3,85E+18	3,08E+17	9,17E+14	1,93E+13	1,92E+16	5,2E+14
FeS ₂ (Lil flux)	4,04E+19	4,28E+18	4,5E+18	9E+16	2,84E+18	3,7E+16	5,95E+18	1,19E+17	6,76E+17	4,26E+16	5,68E+16	5,91E+15	4,67E+19	2,01E+18
FeS ₂ (CsI flux)	5,49E+17	6,92E+16	4,45E+18	4,9E+16	3,23E+18	6,13E+16	6,9E+18	1,24E+17	9,55E+17	5,83E+16	8,52E+18	2,47E+17	1,86E+19	7,25E+17
FeS ₂ (KI flux)	4,87E+17	' 1,2E+17	4,77E+18	1,91E+16	3,11E+18	3 1,12E+17	6,6E+18	5,94E+16	7,31E+17	6,21E+16	1,76E+15	7,92E+13	9,45E+18	2,93E+17
FeS ₂ (4x KI flux)	5,72E+17	1,73E+16	1,75E+18	8,68E+15	4,82E+18	2,84E+17	9,29E+18	3,69E+16	2,30E+17	7,58E+15	2,26E+14	0,00E+00	1,78E+17	6,88E+15
FeS ₂ (10x KI flux)	4,60E+17	1,30E+16	3,98E+18	1,15E+17	4,76E+18	1,89E+16	8,30E+18	2,49E+17	3,17E+16	5,21E+15	2,26E+14	0,00E+00	1,27E+17	4,03E+15
FeS ₂ (KI flux) 4N prec.	6,42E+17	2,17E+16	2,57E+18	1,13E+17	1,22E+18	1,23E+16	8,04E+18	3,46E+17	3,50E+18	1,64E+17	4,53E+14	0,00E+00	2,48E+17	1,07E+16
Na ₂ S _x	1,34E+18	2,60E+16	2,08E+16	1,74E+15	5,11E+14	0,00E+00	2,62E+16	2,05E+15	0,00E+00	0,00E+00	2,26E+14	0,00E+00	1,80E+17	1,19E+15
Lil	2,65E+22	1,22E+21	1,74E+16	2,32E+15	1,53E+15	0,00E+00	2,15E+16	1,03E+15	5,07E+16	6,63E+15	4,35E+16	2,04E+15	4,23E+19	2,96E+17
кі	4,32E+18	9,97E+16	7,06E+16	2,32E+15	2,04E+15	0,00E+00	4,72E+16	1,03E+15	1,61E+16	4,26E+15	4,53E+14	0,00E+00	3,28E+19	6,56E+17

Table 2. All ICPMS results of the pyrite materials, precursors, and fluxes.

Red – unreliable measurements, equipment had become compromised

Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) data

Impurities in powder materials were qualitatively determined by TOF-SIMS 5 by IONTOF. Oxygen etching at 2 keV was used for the negative mode measurement, while cesium etching at 0.5-1 keV was used for the positive mode. The measurements were carried out with vanadium primary ions with the ion gun working at 25 keV. The ToF-SIMS measurements were taken in the so-called "static" regime, where only the first few atomic layers are removed prior/during the measurement. The elemental data is obtained as a graph of counts vs time, where the elemental concentrations stabilize over a few hundred seconds of sputtering time, for example:

Figure 1. Example of raw ToF-SIMS data. Each colored line represents a different element/ion.

Each colored line represents a different elemental signal from the sample. The intensity values are considered from the parallel region of the graph, after at least 200 s of sputter time.

The following table summarizes the ToF-SIMS data gathered from the materials:

	KI flux	Na ₂ S _x flux	Lil flux	Csl flux	no flux
Impurity ion	intensity ratio to matrix	intensity ratio to matrix	intensity ratio to matrix	intensity ratio to matrix	intensity ratio to matrix
Cu ⁺	4,55E-05	8,00E-06	2,73E-05	3,64E-05	3,85E-05
Ni⁺	2,73E-03	5,00E-02	3,64E-03	0,00E+00	1,15E-02
K+	4,55E-03	1,00E-03	3,64E-03	2,73E-03	
Li+		2,00E-05			1,31E-04
Na ⁺	1,82E-02	3,00E-02	1,82E-02	1,00E-02	4,11E-02
Cs ⁺	9,09E-04		3,64E-04	5,45E-04	3,85E-05
ŀ	9,09E-05		2,50E-05	0,00E+00	
Cl-	2,73E-04	8,33E-02	2,75E-04	0,00E+00	