NiGraf: A new nickel-based molecularly doped metal for enhanced water electrolysis

Mario Pagliaro,^{a*} Maria V. Pagliaro,^b Rocco Caliandro,^c Cinzia Giannini,^{c*} Rosaria Ciriminna,^{a*} Alessandro Lavacchi^{b*}

 ^aIstituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
 ^bIstituto di Chimica dei Composti Organometallici, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino FI, Italy; ^cIstituto di Cristallografia, CNR, via G. Amendola 1220, 70126 Bari, Italy

Electronic Supplementary Information

1. Determination of the crystal phase composition

Figure S1. Screenshot of the QUALX [https://www.ic.cnr.it/software/qualx/] graphic output, showing the identification of jamborite as the most probable crystal phase present in the lab XRD profile of the NG1 sample.

Figure S2. XRD profiles calculated from two $Ni(OH)_2$ polymorphs: theophrastite (top) and jamborite (bottom).

Figure S3. PCA-assisted identification of the crystal phase composition of the NG samples, based on the PDF profiles (reported in the insets). The experimental PDF profiles of NG1, NG2 and NG3 and those calculated from the crystal structures reported in Table S1 are represented by a data point in the score plot of the first two PCA components, PC1 and PC2. Their variance percentages explained are reported on the corresponding axes. The data points are clustered according to their position in the score plot and PDF profiles of the same cluster are superposed in the insets.

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
COD 1543272	NG2	COD 4002026	NG1	COD 9012317 (Jamborite)
		- And		25
COD 4002025	NG3	COD 7235236 planar	COD 9012241	
		fragment		
COD 4120862	COD 9000046			

Table S1. Composition of the clusters shown in Figure S1 and images of the crystal structures used to calculate the PDF profiles. The crystal structures are identified by their COD or CCDC numbers.

	1-83 A		
COD 4119215	COD 9011577		
	Se de		
COD 4119216	COD 9012232		
COD 4123602	COD 9012234		
	and the second		
COD 7116967	COD 9012235		
COD 7116968	COD 9012236		
	A B B		
COD 7116969	COD 9012237		

COD 7116971	COD 9012238		
COD 7235236	COD 9012239		
CCDC 2003039	COD 9012243		
	COD 9012230		
	COD 9012705		

2. Structural refinement

Table S2. Parameters determined by fitting of the PDF profiles of the NG1, NG2 and NG3 samples with a structural model composed by a linear superposition between the crystal structures COD 9012317 (jamborite) and COD 9012236 (GO). R_w is the weighted agreement factor between observed and calculated PDF, Q_{broad} describes the peak broadening from increased intensity noise at high Q, *Scale* is the parameter that weights the amount of jamborite in the linear superposition between the two crystal structures, δ_1 is the coefficient for 1/r contribution to the peak sharpening, $SP_{diameter}$ is the particle diameter for the PDF shape damping function. The parameters Q_{broad} and δ_1 have not be introduced for the fit of NG2 and NG3, since they are only significant for refinements over wider *r* ranges.

	NG1	NG2	NG3	
Fit range	1-20 Å	1-15 Å	1-15 Å	
R_w	0.399	0.360	0.370	
Q _{broad}	0.25			
COD 9012317 Jamborite (R -3m)				
Scale	0.215	0.015	0.025	
δ_1	2.45			
Cell	a=b=c=9.14 Å	a=b=c=9.05 Å	a=b=c=9.30 Å	
parameters	α=β=γ=19.5°	α=β=γ=19.6°	α=β=γ=19.1°	
COD 9012236 GO (C mmm)				
SP _{diameter}	6.6 Å	9.9 Å	10.5 Å	
Cell	a=5.02 Å,	a=4.91 Å,	a=4.91 Å,	
parameters	b=5.66 Å,	b=7.17 Å,	b=7.17 Å,	
	c=4.19 Å	c=4.13 Å	c=4.11 Å	

Figure S4. Average size determined by the lab XPD profiles by considering the common peak at $2\theta = 60.4^{\circ}$, assigned to the jamborite phase (a) and at $2\theta = 45^{\circ}$, assigned to the GO phase (b). Background subtracted profiles (black lines) are fitted by PseudoVoigt function (dashed red lines).

3. Electrochemical supporting data

Figure S5. A) HER and B) OER Tafel curves and slope values extrapolated from linear fitting of respective LSV curves.

HER and OER Tafel plots and extrapolated Tafel slope values are reported in Figure S5. For HER, NG1, NG2, and NG3 show all similar values around 120 mV dec⁻¹ between -0.3 and -0.4 V *vs.* RHE, indicating that the HER occurs through the same Volmer-Heyrovsky mechanism. The Tafel values for OER, calculated between 1.5 and 1.6 V, are higher than 120 mV dec⁻¹ and compatible with the presence of oxidized species, but these values do not provide specific indications on the type of mechanism for the oxygen evolution reaction.

The electrochemical impedance spectroscopy (EIS) measurements were acquired at constant applied potentials, -0.3 V vs. RHE for HER, and 1.6 V vs. RHE for OER. The measurements were acquired in N₂ purged KOH 0.1 M. The respective Nyquist plots are shown in Figure S6 A) and B).

Figure S6 Nyquist plot of the three samples NG1-2-3: A) for HER at -0.3 V *vs.* RHE and 1600 rpm, B) for OER at 1.6 V *vs.* RHE and 1600 rpm.

The EIS results show that OER is a more favorable reaction on the surface of NiGraf catalysts than HER and highlight a different trend for catalysts. The three NG NiGraf samples exhibited in general lower charge transfer resistance for OER, with growing R_{CT} values in the order NG3>NG2>NG1 as expected, confirming that NG3 is the most active catalyst. Moreover, NG2 and NG3 samples exhibit similar C_{dl} values, one order of magnitude larger with respect to NG1 (Table S3). EIS results for HER demonstrate that this reaction is more sluggish with respect to OER, with substantially higher R_{CT} values, especially for the NG3 sample with the highest GO content.

Sample	HER (-0.3 V vs. RHE)		OER (1.6 V vs. RHE)	
	R _{CT} (Ω)	C _{dl} (µF)	R _{CT} (Ω)	C _{dl} (µF)
NG1	77	272	68	0.9
NG2	586	141	30	12
NG3	1300	150	18	15

Table S3. EIS extrapolated data through fitting with a simple Randles circuit modified with a Warburg diffusion element.

4. Scanning Electron Microscopy (SEM)

Figure S7. SEM images of NG1 (0.2% GO): (A): low magnification (×10k), (B,C): high magnification (×25k and ×50k). SEM images of NG2 (1% GO): (D): low magnification (×10k), (E,F): high magnification (×25k and ×50k). SEM images of NG3 (5% GO): (G): low magnification (×10k), (H,I): high magnification (×25k and ×50k).