Supporting Information

Induced chiroptical properties of helical Eu(III) complex

by electrostatic interaction with DNA

Ziying Li,¹ Nana Hitomi, ¹ Hitomi Ohmagari,² Hideyuki Tanaka,² Kazuki Nakamura,¹ Miki Hasegawa, ² Norihisa Kobayashi¹

¹Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. koban@faculty.chiba-u.jp

²College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258, Japan. <u>hasemiki@chem.aoyama.ac.jp</u>

Fig. S1 Absorption (bottom) and CD (top) spectra of DNA. The concentration is 0.1 mmol/L.

Fig. S2 I_{rel} of EuL^{COOH} and the DNA/EuL^{COOH} hybrid solutions.

Fig. S3 (a) Emission spectra and (b) emission decay profile of EuL^{COOH} without and with the addition of the excess amount of NaCl (1500 eq. to EuL^{COOH}).

Fig. S4 (a) Emission spectra of EuL^{COOH} and the DNA/EuL^{COOH} hybrid solutions without and with the addition of NaCl. (b) Emission spectra of the DNA/EuL^{COOH} hybrid solutions for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (left) and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (right) without and with the addition of NaCl. The excitation wavelength was 315nm.

Fig. 5 Emission decay profiles of EuL^{COOH} and the DNA/EuL^{COOH} hybrid solutions without and with the addition of NaCl.

[DNA] : [EuL ^{COOH}]	$\tau_{\rm ave}({\rm ms})$	$\tau_1(ms)$	$\tau_2(ms)$
=10:1			
[NaCl] (mmol/L)		0.50	1.1
0	0.88	45.6%	54.5%
0.5	0.78	53.5%	46.5%
1	0.73	61.6%	38.5%
3	0.65	75.4%	24.7%
5	0.62	79.9%	20.1%
10	0.59	85.0%	15.0%
30	0.56	89.8%	10.2%
[EuL ^{COOH}]	0.53		

Table S6 Average emission lifetime (τ_{ave}) and contribution (%) of τ_1 , τ_2 components of EuL^{COOH} and the DNA/EuL^{COOH} hybrid solution without and with the addition of NaCl.

Fig. S7 (a) Emission spectra of EuL^{COOH} and the DNA/EuL^{COOH} hybrid solution at various temperatures. (b) Emission spectra of the DNA/EuL^{COOH} hybrid solution for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (left) and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (right) at various temperatures. The excitation wavelength was 315 nm.

Fig. S8 Emission decay profiles of the DNA/EuL^{COOH} hybrid solution at various temperatures.

Fig. S9 Absorption (bottom) and CD (top) spectra of the DNA/EuL^{COOH} hybrid solution at various temperatures. Insert: the relationship between the temperature and absorbance (257 nm) of DNA.