Supporting Information

Scale up the charge transfer on $Pd@Ti_3C_2T_x$ -TiO₂ catalysts: a sustainable approach for H₂ generation via water splitting

Muhammad Zeeshan Abid^a, Khezina Rafiq^a*, Abdul Rauf^a, Raed H. Althomali^b, Ejaz Hussain^a*

^aInstitute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur–63100, Pakistan.

^bDepartment of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University,

Wadi Al-Dawasir–11991, Saudi Arabia.

Corresponding authors: Dr. Ejaz Hussain: ejaz.hussain@iub.edu.pk;

Dr. Khezina Rafiq: <u>khezina.rafiq@iub.edu.pk</u>

Figure S1: The Hydrogen evolution performance of TiO_2 , $Ti_3C_2T_x$ - TiO_2 , and $Pd@Ti_3C_2T_x$ - TiO_2 were illustrated in mmol g⁻¹ h⁻¹.

Figure S2: Recyclability of $Ti_3C_2T_x$ -TiO₂ and Pd@Ti₃C₂T_x-TiO₂ catalysts.

Figure S3: XRD of used $Ti_3C_2T_x$ -TiO₂ and Pd@Ti₃C₂T_x-TiO₂ catalysts.

Figure S4: XPS results of used $Pd@Ti_3C_2T_x$ -TiO₂ catalyst (a) Ti 2p (b) O 1s (c) C 1s and (d) Pd 3d.

Sr No.	Catalyst	Light source	Catalyst amount (mg)	Sacrificial reagent	H ₂ (µmolg ⁻¹ h ⁻¹)	Ref.
1	Ti_3C_2 - TiO_2	300 W Xe arc	20	20%	783.11	[1]
2	Ti_3C_2 - TiO_2 -500/Pt		20	methanol	1596.35	
3	Ti ₃ C ₂ T _x /TiO ₂ (P25)	200 W Hg (285– 325 nm)	30	25% methanol	79.5	[2]
4	TiO ₂ /C composite	300 W Xe arc (> 420 nm)	50	10 vol% (TEOA)	0.863	[3]
5	Mxene-TiO ₂	300 W xenon	50	10 vol% (TEOA)	390.92	[4]
6	BiVO ₄ /Ti ₃ C ₂	300 W Xe arc	10	15 % methanol	15.7	[5]
7	C-Ti/CN-10	300 W Xe	20	100 ml TEOA	1409	[6]
8	C-dots/g-C ₃ N ₄ /TiO ₂ nanosheets	300 W Xe	50	10% vol TEOA	210	[7]
9	CdS-MoS ₂ -MXene	300 W Xe	5	0.25 M Na ₂ S	9679	[8]
10	$Ti_3C_2T_x$ - TiO_2	450 W Xe	25		12600	This work
11	Pd@Ti ₃ C ₂ T _x -TiO ₂	450 W Xe	25		35800	This work

 Table S1: The comparison of related reported catalysts.

References:

- 1. Li, Y., et al., *Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting.* Applied Materials Today, 2018. 13: p. 217-227.
- 2. Su, T., et al., *Monolayer Ti3C2 T x as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO2.* ACS Applied Energy Materials, 2019. 2(7): p. 4640-4651.
- 3. Wang, J., et al., *Single 2D MXene precursor-derived TiO2 nanosheets with a uniform decoration of amorphous carbon for enhancing photocatalytic water splitting.* Applied Catalysis B: Environmental, 2020. 270: p. 118885.
- 4. Zong, S., et al., *Mxene-TiO2 composite with exposed {101} facets for the improved photocatalytic hydrogen evolution activity.* Journal of Alloys and Compounds, 2022. 896: p. 163039.
- 5. Li, Y., et al., 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. Applied Catalysis B: Environmental, 2021. 285: p. 119855.
- Han, X., et al., *Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation.* Applied Catalysis B: Environmental, 2020. 265: p. 118539.
- 7. Li, Y., et al., *Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites.* Journal of colloid and interface science, 2018. 513: p. 866-876.
- 8. Chen, R., et al., *Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation.* Applied Surface Science, 2019. 473: p. 11-19.