Electronic Supporting Information (ESI)

Meniscus-Confined Capping Free 3D Printed Gold Nanoparticles for Quantitative SERS Detection of Bisphenol A

Netrapal Singh a,b, Manoj Kumawat c, Hafsa Siddiqui b, Koyalada Bhavani Srinivas Rao b, Satendra Kumar a,b, Manoj Goswami a,b, Sathish Natarajan a,b, Mohammed Akram Khan a,b, Avanish Kumar Srivastava a,b, and Surender Kumar a,b,*

a Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
b CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal-462026, India.
c ICMR- National Institute for Research in Environmental Health, Bhopal-462030, India.

* Corresponding author: surenderjanagal@gmail.com, surender@ampri.res.in
Figure S11. CV curve of 5 mM HAuCl₄ electrolyte to determine the optimum deposition potential for preparing 3DPAu substrates. The scan rate was 50 mVs⁻¹.

Figure S12. Low magnification FESEM image of 3DPAu.
Figure S13. EDS mapping of 3DPAu on ITO glass with separate Au, Si, O, and In mappings.
S1. Enhancement factor calculation

The average SERS analytical enhancement factors (AEFs) for the 3DPAu substrates were calculated using the following equation:

$$ AEF = \left(\frac{I_{SERS}}{I_{NR}} \right) \times \left(\frac{C_{NR}}{C_{SERS}} \right) \quad (1), $$

I_{SERS} and I_{NR} are the integrated intensities in arbitrary units (a.u.) observed from SERS and normal Raman spectra. While C_{SERS} and C_{NR} stand for concentrations used during SERS and normal Raman measurements, respectively. The equation took into consideration the fact that all other experimental conditions, such as laser wavelength, laser power, microscope objective lenses, spectrometer, etc., are identical both in SERS and normal Raman measurements.\(^1\,^2\)

The concentrations of BPA for SERS and normal Raman measurements were 10^3 and 2.3×10^5 ppm, respectively. The characteristics band at 1616 cm\(^{-1}\) of BPA was chosen for the AEF.

Figure S14. Complete XPS survey of 3DPAu on ITO glass.
calculation. The detailed AEF calculation is as follows:

We have, $I_{\text{SERS}} = 31457$, $I_{\text{NR}} = 526$, $C_{\text{NR}} = 2.3 \times 10^5$ ppm, $C_{\text{SERS}} = 10^3$ ppm

Putting all the values in equation-1 provides:

$AEF = 1.4 \times 10^4$.

AEF for corresponding to other characteristics peaks are provided in Table SI1.

Table SI1. AEF for 3DPAu substrate at different Raman bands of BPA.

<table>
<thead>
<tr>
<th>Peak Number</th>
<th>BPA Peak position (cm$^{-1}$)</th>
<th>I_{SERS} (a.u.)</th>
<th>I_{NR} (a.u.)</th>
<th>AEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1116</td>
<td>33876</td>
<td>616</td>
<td>1.3×10^4</td>
</tr>
<tr>
<td>2</td>
<td>1183</td>
<td>36314</td>
<td>772</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td>3</td>
<td>1235</td>
<td>30476</td>
<td>548</td>
<td>1.3×10^4</td>
</tr>
<tr>
<td>4</td>
<td>1264</td>
<td>27227</td>
<td>403</td>
<td>1.6×10^4</td>
</tr>
<tr>
<td>5</td>
<td>1616</td>
<td>31457</td>
<td>526</td>
<td>1.4×10^4</td>
</tr>
<tr>
<td>6</td>
<td>3067</td>
<td>51379</td>
<td>1570</td>
<td>0.8×10^4</td>
</tr>
</tbody>
</table>
Figure S15. SERS spectra of 100 PPM BPA@3DPAu corresponding to (a) 36 random spots of 3DPAu substrates indicating repeatability, (b) 5 different substrates showing reproducibility, and (c) SERS spectra of a mixture of 10 PPM BPA and phthalate ester mix of same concentration to show the selectivity of 3DPAu towards BPA detection.
Figure S16. SERS map data of 100 PPM BPA@3DPAu corresponding to an area of 40 * 40 µm².

Figure S17. SERS spectra correspond to different spiked concentrations of BPA in real samples. (a) for drinking mineral water packaged in plastic bottles (BPA_RS-DW) and (b) water samples (BPA_RS-BW) obtained by boiling polycarbonate baby milk bottles.
References
