Supplementary Information

Proton Conductivity of Li⁺-H⁺ Exchanged Li₇La₃Zr₂O₁₂ Dense Membranes Prepared by Molten Long-Chain Saturated Fatty Acids

Akihiro Ishii,*^a Daisuke Kume,^a Shoki Nakayasu,^a Itaru Oikawa,^a Hiroshi Matsumoto,^b Hisashi Kato,^b and Hitoshi Takamura^a

^a Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.

^b Research and Development Center, Tohoku Electric Power Co., Inc, Sendai, 980-8550, Japan.

* Corresponding author email: akihiro.ishii.a4@tohoku.ac.jp

S1. Supporting figures

Fig. S1 (a) Cross-sectional SEM image of LLZ membrane (a part of Fig. 2a in main manuscript), and (b) a result of filling 8% with red color from the dark regions of (a). All the pore regions, along with a small portion of non-void areas, were filled in red. This supports that the relative density of this sample is 92%.

Fig. S2 Surface SEM images of as-sintered and C₂₁H₄₃COOH-immearsed LLZ membranes.

Fig. S3 Raman spectrum of pristine LLZ dense bodies.

Fig. S4 Typical Nyquist plot of Li^+-H^+ exchanged LLZ dense bodies. The equivalent circuit is also depicted as an inset. The *p* value, which is an index of how much the semicircle is distorted (p = 1 corresponds to an ideal semicircle), varied from 0.92 to 0.81 depending on the temperature.

Fig. S5 XRD pattern of Li⁺-H⁺ exchanged LLZ after annealing at 500°C. A broad peak is observed around 28° where La₂Zr₂O₇ shows its characteristic peak.

Fig. S6 Proton distribution in Li⁺-H⁺ exchanged LLZ calculated by DFT-GGA calculation. Elements other than proton (shown in pink) and oxygen (red) are omitted. VESTA [K. Momma and F. Izumi, *J. Appl. Crystallogr.*, 44, (2011) 1272] was used for visualization.

S2. Thermogravimetric analysis to assess stability and water loss of Li⁺-H⁺-exchanged LLZ

The thermogravimetric analysis was conducted on the LLZ membranes before and after immersion in behenic acid at 250 °C for 15 h, as shown in Fig. S7. The as-sintered LLZ showed 0.4% and 0.9% stepwise weight loss at around 300 °C and at 500 °C, which are attributed to release of H₂O and CO₂. [G. Larraz *et al.*, *J. Mater. Chem. A* **1** (2013) 11419-11428] LLZ is sensitive to air exposure, reacting to form LiOH in the first step and followed by the reaction to form Li₂CO₃. [Ref. 48 in main manuscript] Meanwhile, the immersed LLZ showed significant weight loss of 6.25 % above 300 °C. Assuming that 1 mol of 91% Li⁺-H⁺ exchanged LLZ (H_{5.61}Li_{0.55}Al_{0.28}La₃Zr₂O₁₂) is decomposed by the dehydration reaction (Eq. 3-1 and Eq. 3-2 in main manuscript), it leads to the formation of 2.8 mol of H₂O, which corresponds to 6.24 % of the weight of the Li⁺-H⁺ exchanged LLZ. Thus, this thermogravimetric analysis supports the idea that the decrease in conductivity (shown in Fig. 5 in the main manuscript) is due to the decomposition of the Li⁺-H⁺ exchanged LLZ by the dehydration reaction.

Fig. S7 Thermogravimetric curves of LLZ membranes before and after immersion in behenic acid at 250 °C for 15 h. Atmosphere was synthetic air and heating ramp was 3 °C·min⁻¹.

S3. Li⁺-H⁺ exchange of NASICON-type doped LiZr₂(PO₄)₃ by molten long-chain saturated fatty acids

In the same manner as for LLZ, semitransparent NASICON-type Li_{1.2}Ca_{0.1}Zr_{1.9}(PO₄)₃-based membranes were prepared, as shown in an inset of Fig. S8a. The samples were not in single phase due to difficulties in phase control, as previously reported [H. El-Shinawi *et al.*, *RSC Adv.* **5** (2015) 17054-17059]. The sample was immersed into molten C₂₁H₄₃COOH at 270 °C for 40 h; however, no XRD peak shift was observed as shown in Fig. S8a and b. This indicates that no or very limited Li⁺-H⁺ exchange was taken place for NASICON-type Li_{1.2}Ca_{0.1}Zr_{1.9}(PO₄)₃ by this treatment, considering that the lattice constants of LiZr₂(PO₄)₃ and HZr₂(PO₄)₃ are known to be clearly different [A. Ono, *J. Mater. Sci.* **8** (1984) 1573]. As shown in Fig. S8c, the electrical conductivities of the pristine and C₂₁H₄₃COOH-immersed samples are almost the same, which supports the limited Li⁺-H⁺ exchange for this sample through the immersion into molten C₂₁H₄₃COOH.

Fig. S8 (a) XRD patterns of NASICON-type Li_{1.2}Ca_{0.1}Zr_{1.9}(PO₄)₃-based membrane before and after the immersion into molten C₂₁H₄₃COOH heated at 270 °C. Inset is a picture of the Li_{1.2}Ca_{0.1}Zr_{1.9}(PO₄)₃-based membrane. (b) Enlarged view of the XRD patterns around 35°. (c) Total electrical conductivity of the NASICON-type Li_{1.2}Ca_{0.1}Zr_{1.9}(PO₄)₃-based membrane before and after the immersion.