Supplementary Information

Europium-doped Hybrid Nano-complexes: a Potential Strategy for Metastasis Prevention in

Osteosarcoma

Yu-Chi Wang^{a,} *, Fu-I Tung^{b, c,} *, Zheng-Ying Sung^a, Mei-Hsiu Chen^{d, e}, Ming-Hong Chen^f, Tse-Ying Liu^a

Fig. S1 High-resolution XPS spectra of Fe 2p in (A) SPIO and (B) Eu:SPIO nanocrystals, and (C) Eu 3d and (D) Eu 4d in Eu:SPIO nanocrystals.

Fig. S2 Magnetization–magnetic field strength (M–H) curves of SPIO@BSA and Eu:SPIO@BSA complexes were normalized based on their Fe content.

Table S1 Atomic percentage (at%) of SPIO nanocrystals, Eu:SPIO nanocrystals, SPIO@BSA NPs, and Eu:SPIO@BSA NPs. The amount of Fe and Eu elements in the SPIO nanocrystals, Eu:SPIO nanocrystals, SPIO@BSA NPs, and Eu:SPIO@BSA NPs were calculated using the data from inductively coupled plasma mass spectrometry (ICP-MS).

	Fe	Eu
SPIO	100	0
Eu:SPIO	87.11	12.89
SPIO@BSA	100	0
Eu:SPIO@BSA	90.75	9.25

Fig. S3 Thermogravimetric analysis (TGA) curves of SPIO@BSA complexes, Eu:SPIO@BSA complexes, and BSA. The weight loss of nanovehicles and BSA was recorded in the temperature range of 30–600 °C with a heating rate of 10 °C/min under a nitrogen atmosphere.

Fig. S4 Effect of (A) SPIO@BSA complexes, (B) Eu:SPIO@BSA complexes, and (C) EuCl₃·6H₂O on cell viability of K7M2 and MC3T3-E1 cells at 24 h. Cell viability was evaluated using the PrestoBlue cell viability reagent.

In vitro cell viability assay

The MC3T3-E1 and K7M2 cells (3×10^4 cells per well) were seeded in 24-well plates and incubated for 24 h. Fresh media containing different concentrations of SPIO@BSA complexes (0–1200 µg/mL), Eu:SPIO@BSA complexes (0–1200 µg/mL) and EuCl₃·6H₂O (0–100 µg/mL) was incubated with cells for 24 h. After removing the medium, cells were washed twice with PBS and incubated with 5% Presto Blue reagent for 30 min. The resulting solution was detected at 560 nm excitation and 590 nm emission wavelengths using a Tecan Infinite 200 plate reader (Infinite[®] 200 PRO, TECAN).

Fig. S5 Confocal images of MC3T3-E1 and K7M2 cells stained with DAPI (blue) and Alexa FluorTM 568 Phalloidin (red). The main objective of this experiment was to showcase the natural cell morphologies without interference from the signals of SPIO@FITC-BSA and Eu:SPIO@FITC-BSA nano-complexes (depicted as the green signals in **Fig. 2**). Comparing the data in **Fig. 2** and **Fig. S5** reveals a noticeable change in cell morphology, attributed to the uptake of Eu:SPIO@FITC-BSA complexes (indicated by the white arrow). Scale bar = 50 µm.

Fig. S6 The expression of (A) matrix metalloproteinase 2 (MMP-2) and (B) vinculin in K7M2 cells. The cells were incubated with SPIO@BSA complexes, Eu:SPIO@BSA complexes, and EuCl₃·6H₂O for 24 h, and the expression of MMP-2 and vinculin was analyzed using immunofluorescence staining. Nuclei and actin cytoskeleton were stained with DAPI (blue) and Alexa 594-labeled Phalloidin (red), respectively. MMP-2 and vinculin were stained with Alexa 488-labeled Phalloidin (green). Scale bar = 40 μ m. Images of the cells were captured using a digital camera interfaced with a fluorescence microscope.

Immunofluorescence assay

To observe the expression of MMP-2 and vinculin, K7M2 cells were seeded onto 18 mm glass slides in 12-well culture plates at a density of 5×10^4 cells per well. The cells were then incubated with or without samples (i.e., SPIO@BSA complexes, Eu:SPIO@BSA complexes, and EuCl₃·6H₂O) for 24 h. The concentrations of SPIO@BSA, Eu:SPIO@BSA complexes, and EuCl₃·6H₂O were 715 µg/mL, 530 µg/mL, and 18 µg/mL, respectively. The concentrations of SPIO@BSA and Eu:SPIO@BSA complexes were selected for the similar Fe content. In addition, Eu:SPIO@BSA complexes and EuCl₃·6H₂O with the similar Eu content were selected. After 24 h, the cells were scratched with a 1 mL pipette tip and cultured for 24 h. Cells were washed twice with PBS, fixed with 4% paraformaldehyde for 15 min, and then permeabilized with Triton X-100 for 5 min. Samples were stained with primary antibodies MMP-2 (GTX104577) and vinculin (GTX113294) (1:500) at 4 °C overnight and Alexa Fluor 594 fluorescence secondary antibody (Abcam, ab150080) for 1 h at room temperature. Finally, the samples were stained with Fluoroshield DAPI (GeneTex, GTX30920) and Alexa Fluor 488 conjugated phalloidin (A12379). The distribution and expression of the biomarkers (MMP-2 and vinculin) were observed using a fluorescence microscope.

Fig. S7 Therapeutic efficacy of Eu:SPIO@BSA complexes and EuCl₃·H₂O in mice on day 28. The *in vivo* imaging system (IVIS) images of (A) the leg and (B) the lungs.