Supplementary Information

Self-cleaning formulation of mixed metal oxide-silver micro-nano structures with spiky corona as antimicrobial coatings for fabrics and surfaces

Ramya Prabhu B.¹,[†] Bhamy Maithry Shenoy²,[†] Manish Verma¹, Soumyashant Nayak³, Gopalkrishna Hegde², Neena S. John¹*

¹Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India

²Indian Institute of Science, Bengaluru 560012

³Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bengaluru 560059, India

Email: jsneena@cens.res.in

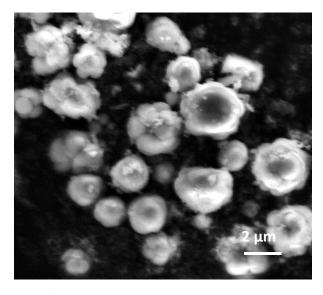
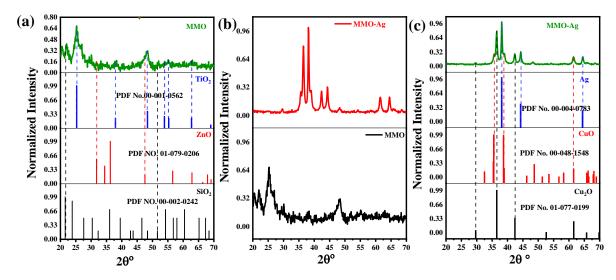
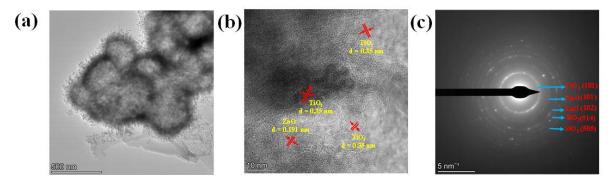




Figure S1. FESEM images of spherical MMO-Ag.

[†]Equal Contribution

Figure S2. X-ray diffractograms (a) spiky MMO (b) comparison of MMO-Ag and MMO (c) MMO-Ag

Figure S3. Additional TEM images (a) spiky MMO (b) HRTEM analysis of MMO (c) SAED analysis of MMO

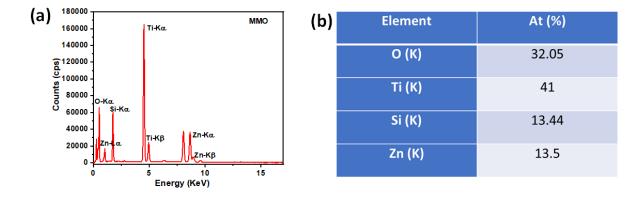
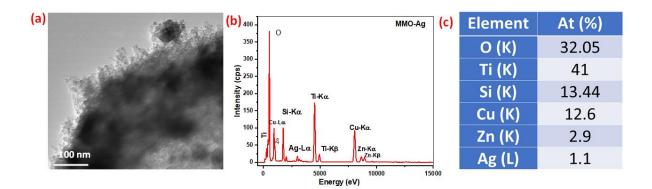
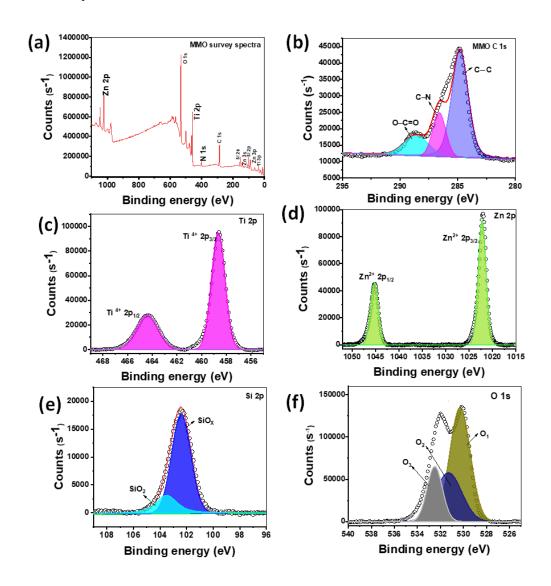




Figure S4. EDS of MMO obtained from TEM

Figure S5. a) Magnified TEM image of MMO-Ag (b,c) EDS of MMO-Ag obtained from TEM **XPS Study**

Figure S6. XPS spectra of MMO (a) XPS survey spectra of MMO. High-resolution XPS of (b) C 1s (c) Ti 2p (d) Zn 2p (e) Si 2p (f) O 1s.

The surface oxidation states of various elements in the MMO have been studied using XPS, as shown in Figure S6. The XPS survey scan (Figure S6(a)) reveals the presence of signatures of Ti (2p, 3p), Si (2s,2p), Zn (2p,3s, 3p), N (1s), C (1s) and O (1s). The deconvoluted highresolution C1s spectra are presented in Figure S6(b), in which the peaks observed at 284.8 eV correspond to sp² and sp³carbon. The peaks around 286 eV and 288.4 eV can be attributed to C-N (of HMTA) and O-C=O (of oxalate), respectively [Md. Nizam Uddin et al., Thin Solid Films, 2013, 548, 27-33; B. Kommula et al., Part. Part. Syst. Charact. 2023, 2300118]. The Ti 2p peaks can be deconvoluted and assigned to $2p_{3/2}$ (458.6 eV) and $2p_{1/2}$ (464.4 eV) of Ti^{4+} oxidation states arising from TiO₂ (Fig. S6 (c)) [S.C. Ray et al., J. Phys. Chem. C 2022, 126 (20), 8947]. The Zn 2p spectra reveal the presence of Zn^{2+} 2p_{3/2} and Zn^{2+} 2p_{1/2} peaks centered at 1022.1 eV and 1045.1 eV, respectively as shown in Fig.S6(d) corresponding to ZnO in MMO [D. L.T. Nguyen et al., ACS Sustain. Chem. Eng. 2017, 5 (12), 11377-11386]. The deconvolution of Si 2p spectra reveals the presence of low valent Si in nonstoichiometric SiO_x (102.4 eV) and Si⁴⁺ in SiO₂ (103.5 eV) (Figure S6(e) [R. Alfonsetti et al., Appl. Surf. Sci. 1993, 70–71, 222; Surf. Interface Anal. 1994, 22 (1–12), 89,L. Sun et al., ACS Appl. Mater. Interfaces **2017**, 9 (46), 40386]. The O 1s spectra is deconvoluted into three peaks at 530.2 eV (O₁) corresponding to the oxide ion (O²⁻) forming the metal-oxygen bond, 531.3 eV (O₂) corresponding to oxygen-deficient species and 532.5 eV (O₃), attributed to the surface hydroxyl groups (Figure S6(f)) [R. Prabhu B., et al., Nanotechnology 2023, 34 (21), 215701]. The relative percentage intensity of O₁, O₂, O₃ species is 52.25%, 28.85 %, and 18.89 %. From the XPS analysis, it is evident that the synthesized material contains an adequate amount of defective oxygen.

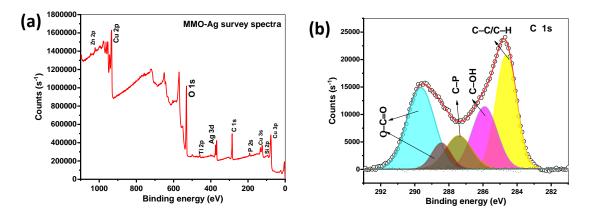
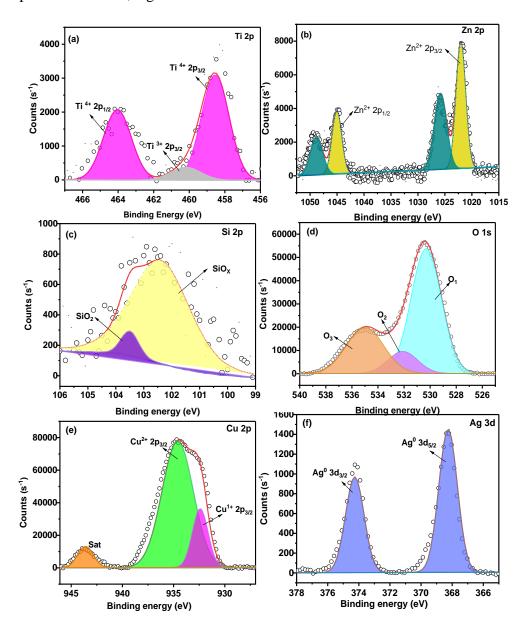



Figure S7. (a) XPS survey spectra of MMO-Ag (b) High-resolution XPS of C1s

The XPS survey scan of MMO-Ag (Figure S7(a)) reveals the presence of major transitions due to Ti (2p, 3p), Si (2s,2p), Zn (2p,3s, 3p), N (1s), C (1s) and O (1s) similar to MMO. In addition, signals from P (2s), Cu (2p,3s,3p), Ag(3d) are also detected in MMO-Ag as expected due to the presence of CuO, Ag and THPC.

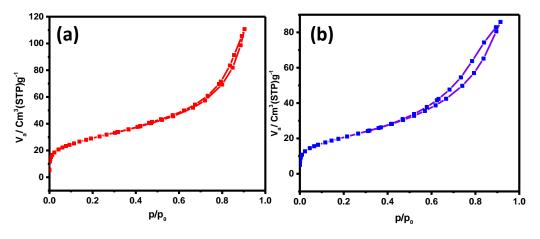
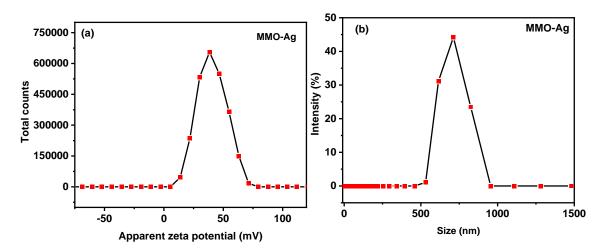
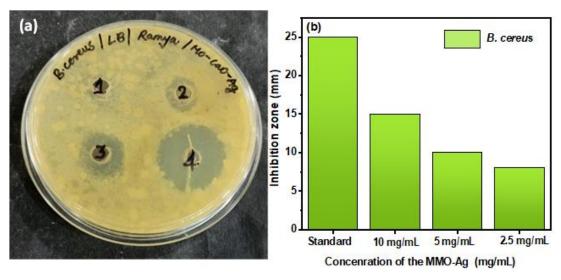


Figure S8. XPS spectra of MMO-Ag (after deposition of CuO and Ag on MMO). High-resolution XPS of (a) Ti 2p, (b) Zn 2p, (c) Si 2p, (d) O 1s, (e) Cu 2p, (f) Ag 3d.


The deconvoluted high-resolution C1s spectra (Fig. S7(b)) exhibits peaks at 284.6 eV that correspond to sp²/sp³ C-C and C-H. The peaks around 285.9 eV, 287.4 eV, 288.4 eV and 289.6 eV can be attributed to C-N (HMTA)/C-OH (THPC), C-P/C-O-C (oxalate, THPC), and C=O/O-C=O groups (hydrolysed and oxidised THPC products), respectively [*T.R.*

Gengenbach et al., J. Vac. Sci. Technol. A 2021, 39, 013204, Z. Bian et al., IOP Conf. Ser.: Mater. Sci. Eng. 2017, 242, 012005].


The Ti 2p peaks of MMO-Ag can be deconvoluted and assigned to 2p_{3/2} (458.5 eV) and 2p_{1/2} (463.9 eV) corresponding to Ti⁴⁺ oxidation state of TiO₂ (Fig. S8(a)). In addition to these peaks, a weak peak is observed at 460.1 eV that can be assigned to Ti³⁺due to titanium suboxide [B. Bharti et al., Sci. Rep. 2016, 6 (1), 32355]. The alkaline treatment followed by chemical reduction would have resulted in the suboxide formation. In the case of Zn 2p spectra, in addition to the presence of Zn^{2+} 2p_{3/2} and 2p_{1/2} peaks at 1022.0 eV and 1045.0 eV, respectively as shown in Fig. S8(b), peaks at a higher binding energy, 1025.8 eV and 1048.8 eV are also observed. This can be associated with the coordination of Zn with the surfactants such as hydrolysed THPC [L.G. Mar et al., Thin Solid Films, 1993, 223, 341]. Similarly, as in the case of MMO the deconvolution of Si 2p spectra shows the presence of majorly low valent Si from nonstoichiometric SiOx (102.4 eV) and SiO₂ (103.5 eV), respectively (Fig. S8(c)). The O 1s peak of MMO-Ag nanoformulations can be deconvoluted into three peaks, as depicted in Figure S8(d). The O₁ (lattice oxygen) at a lower binding energy value of 530.3 eV, O₂ around 532.0 eV due to the hydrated species a broader peak at 534.9 eV (O₃) is due to the H₂O molecules. Figure S8 (e) shows the deconvoluted spectra of Cu 2p. The Cu 2p_{3/2} component can be deconvoluted into peaks contributed by Cu¹⁺ and Cu²⁺ states, located at 932.3 and 934.5 eV. This clearly shows the presence of Cu₂O and CuO and agrees with the XRD results. [D. A. Svintsitskiy, J. Phys. Chem. C 2013, 117, 28, 14588] The satellite peak with a binding energy of 943.6 eV is also observed in the spectra. The HRXPS of Ag 3d indicates the presence of elemental silver (Ag⁰) at 368.2 eV (3d_{5/2}) and 374.2 eV (3d_{3/2}), respectively (Figure S8(f)) [W.W. Bryan et al., RSC Adv., 2016, 6, 68150].

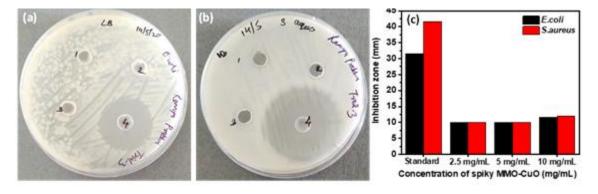

Figure S9. BET isotherm and BJH plot, respectively of (a, b) MMO (c, d) MMO-Ag.

Figure S10. (a) Zeta potential plot (b) Average particle size distribution of 1 mg/mL concentration of MMO-Ag in ethanol by DLS.

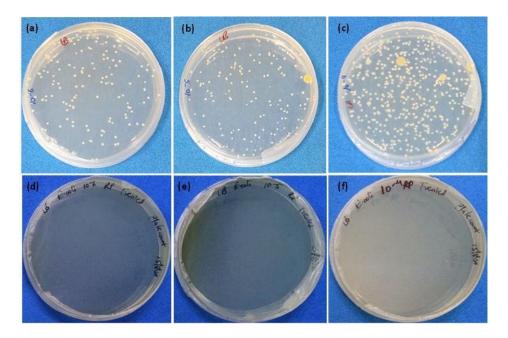


Figure S11. Photographs of ZI (a) MMO-Ag against *B. cereus.* (b) Bar diagrams showing ZI for various concentrations of MMO-Ag along with that of the standard antibiotic Ciprofloxacin.

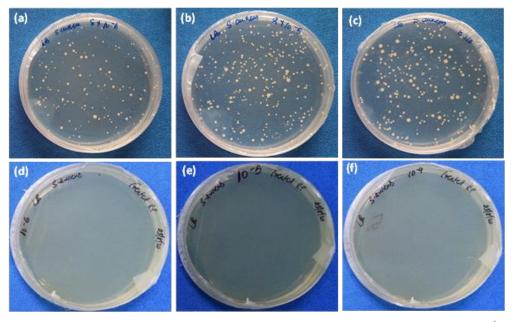
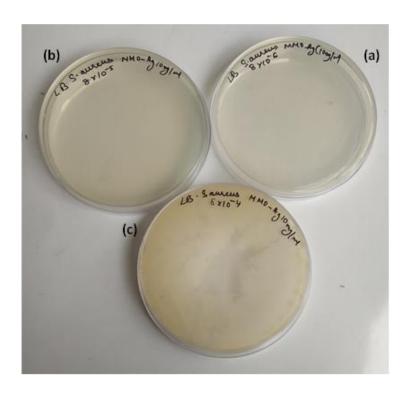


Figure S12. Photographs of ZI obtained for various concentrations of spiky MMO-CuO (without Ag) (a) against *E. coli* (b) against *S. aureus* (c) Bar diagrams showing ZI.


The numbers 1, 2, and 3 in the photographs correspond to the loading of 2.5, 5, and 10 mg/mL of the spiky MMO-CuO on the test bacteria, respectively and number 4 corresponds to the standard antibiotic ciprofloxacin. The corresponding inhibition zone values are shown in the bar graph, Figure S12(c). It is observed that spiky MMO-CuO has slightly lesser antimicrobial properties (lesser ZI) compared to the spiky MMO-Ag , but is still active.

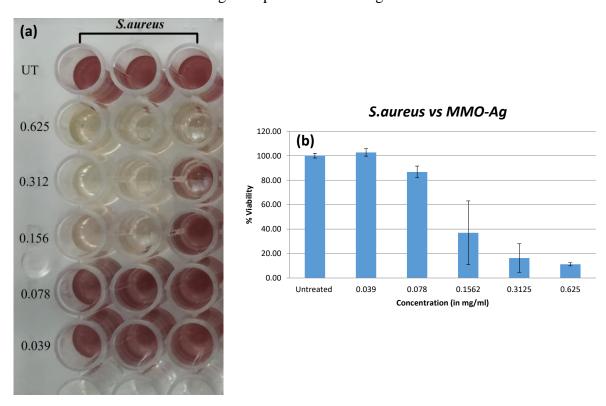

Figure S13. Photographs of agar plates incubated with (a-c) *E. coli* of 8×10^{-6} , 8×10^{-5} and 8×10^{-4} CFU/mL (d-f) treated with 10 mg/mL MMO-Ag.

Figure S14. Photographs of agar plates incubated with (a-c) *S. aureus* of 8×10^{-6} , 8×10^{-5} and 8×10^{-4} CFU/mL (d-f) treated with 10 mg/mL MMO-Ag.

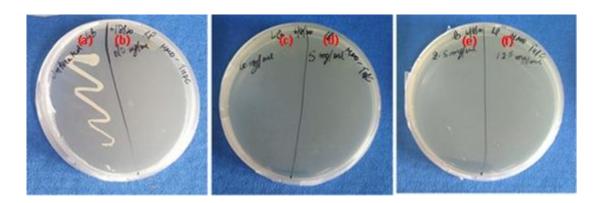


Figure S15. Photographs of agar plates incubated with (a-c) S. aureus of 8×10^{-6} , 8×10^{-5} , and 8×10^{-4} CFU/mL treated with 10 mg/mL spherical MMO-Ag.

Figure S16. Photographs of 96 wells microtitre plate with *S. aureus* bacterial solution treated with various concentrations of (a) MMO-Ag (b) Graph showing percentage viability of *S. aureus* vs. MMO-Ag.

We can observe the untreated *S. aureus* bacteria is well-grown in the media and the red turbidity is observed. That is because the p-iodonitrotetrazolium violet dye which is treated with the microorganism has reduced to form a purple formazan dye. The reduction of the tetrazolium salt is due to the activity of the mitochondria enzyme in the active cells [*J.N. Eloff et al., Planta Med. 1998, 64, 711*]. The intensity of the formazan compound can be measured using absorbance where the intensity of the compound is directly proportional to the number of metabolically active cells. From these microplate's absorbance is recorded at the 600 nm wavelength, and the cell viability is calculated.

Figure S17. Photographs of agar plate with *S. aureus* bacterial solution (a) untreated agar plate (b) treated with 20 mg/mL (c) 10 mg/mL (d) 5 mg/mL (e) 2.5 mg/mL (f) 1.25 mg/mL concentration of the MMO-Ag.

Table S1. Comparison of antibacterial activity with literature

Nanomaterial	Size & Shape	Microbe	Mode of action	Efficacy against microbes	Ref
MMO-Ag	~1.2 µm spiky	Gram- positive and gram- negative bacteria and virus	ROS generation, mechano- bactericidal effect, Electrostatic interaction	MIC50 107µg/mL -S. aureus	This work
CuO-NiO	8–10 nm nanoparticles	Gram-positive and Gram- negative bacteria	electrostatic force of attraction	MIC 3.0 mg/mL -S. aureus 4.9 mg/mL -E. Coli	Mater. Res. Exp., 2019, 6(5), 055004.
ZnO nanoparticles in ionic liquid	64 nm nanoparticles	Gram-positive bacteria S. epidermidis, Skin specific bacteria	toxic Zn2+ ions are produced, which in turn help in the production of intracellular ROS	IC ₅₀ 70 μg/mL and IC ₉₀ 105 for <i>S. epidermidis</i>	ACS Appl. Mater. Interfaces 2018, 10, 18, 15401.
CoV ₂ O ₆	10-200 nm Nanorods	Gram-positive and Gram- negative bacteria	Electrostatic interaction of the Co metals and the membrane	IC ₅₀ 0.43 mg/mL- <i>E.</i> <i>Coli</i> 0.51 mg/mL <i>Kleb. p</i> 0.53 mg/mL- <i>MRSA</i>	Ceramics Int., 2018, 44(7), 7716.

			Oxidative stress in cells and DNA damage	0.62 mg/mL-S. aureus	
Cellulose/Yttri um oxide	Nanodisc on nanotube	Gram-positive and Gram- negative bacteria	photocatalytic disinfection Generation of reactive species	~100% efficacy 30 mg/L- <i>E. Coli</i> 60 mg/L- <i>S. aureus</i>	Mater. Lett., 2017, 192, 64.
Silver/Lithium /Vanadium oxide	Nanotube Dia 40-50 nm	Gram-positive and Gram- negative bacteria	direct action of the nanocomposites on the cell surfaces by generation of ROS	MIC ₅₀ 40 μg/mL-B. subtilis 80 μg/mL- E. Coli	Appl. Microbiol. Biotechno 1., 2013, 97(18), 283.
mesoporous silica supported SBA/CuO SBA/ZnO CuZnO	Spherical	Gram-positive and Gram- negative bacteria	Release of dissociated metal ions and the release of reactive oxygen species	12.5 mg/mL 50 mg/mL 0.558 mg/mL-E. coli 3.125 mg/mL 12.5 mg/mL 0.139 mg/mL-S. aureus	RSC Adv., 2020,10, 2767.
RGO-NiO, RGO-AgO, RGO-ZnO	rGO sheets metal oxide spherical nanoparticles	Gram-positive and Gram- negative bacteria	the release of reactive oxygen species	250 μg/mL 250 μg/mL 125 μg/mL- <i>E. coli</i> 125 μg/mL 25 μg/mL 250 μg/mL- <i>S. aureus</i>	RSC Adv., 2021,11, 25961.
CuO ZnO	Nanorods Average length 100 nm Spherical 10 nm to 35 nm	Gram-positive and Gram- negative bacteria	the release of reactive oxygen species	1 mg/mL-E. coli 0.25 mg/mL S. aureus 0.1 mg/mL- S. aureus No inhibition-E. coli	Results in Materials, 2020, 7, 100099
Ag-Sn/SnO ₂ Ag Sn/SnO ₂	Particle size 1– 18 nm in size. rod type, chain like and interlinked with each other	Gram-negative bacteria	Ag/Ag+ enters inside the cell through phagocytosis/end ocytosis, then it can damage the DNA and the release of reactive oxygen species	0.015 μg/mL 0.03 μg/mL 0.625 μg/mL - A. baumanii	RSC Adv., 2022, 12, 1105
α-Fe ₂ O ₃ /Co ₃ O (0.1(M) Fe ₂ O ₃ + 0.1(M) Co ₃ O ₄)	Mix of rod shaped and roughly hexagonal shaped nanoparticles	Gram-positive and Gram- negative bacteria	Fenton reaction cobalt oxide nanoparticles trigger the production of reactive oxygen species	90 mg/dL-B. subtilis 75 mg/dL-S. aureus 60 mg/dL-S. typhi 45 mg/dL-E.coli	Appl. Nanosci. , 2018, 8, 137.
WO ₃ -GO	WO ₃ nanospheres on the graphene	Gram-positive and Gram-	photocatalytic antibacterial effect	2.5-5 mg/mL	J. Phys. Chem. Solids,

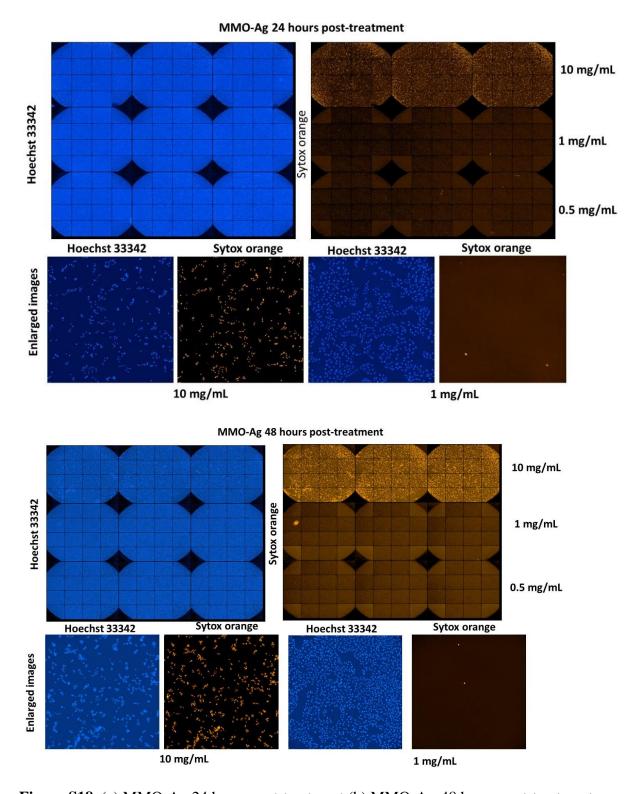
	sheet	negative bacteria			2018, 116,137.
Li-doped MgO	thin sheets	Gram-positive and Gram- negative bacteria	Generation of holes and free electrons by defect rich MgO mechanical damage by sheet morphology	600 μg/mL-against E. coli and S. aureus	Powder Tech., 2020, 371, 130.
ZnO @ rattle- type silica nanoparticles (ZnO@SN)	Silica has inner hollow cavity of 150 nm size and a rough shell studded with many 4-6 nm ZnO nanoparticles	Gram-negative bacteria	ROS from ZnO particles	6.25 µg/mL methicillin-resistant Staphylococcus aureus	Sci. Bull. 2017, 62, 1207.
Ag/CuO 5%	Ag nanoparticles CuO porous open channel	Gram-positive and Gram- negative bacteria	ROS	30 μg/mL- E. coli 30 μg/mL-K. pneumoniae 20 μg/mL-S. aureus	Colloids Surf A, 2019, 580, 123732
Ag@MgO	Embedded- layered coreshell structure with 3- 10 nm size	Gram-positive and Gram- negative bacteria	Release of Ag ⁺ and Mg ²⁺ ions as well as the production of reactive oxygen species	15 μg/mL- <i>E. coli</i> 20 μg/mL- <i>S. aureus</i>	Photodiag nosis and Photodyna mic Therapy, 2021, 33, 102153
Nanostructure d Ti surface	Nanowire/Nano sheet clusters on surface with 23 nm pyramidal tip	Gram-positive and Gram- negative bacteria	Mechanobacterici dal effect	bactericidal efficiency of 98.6 ± 1.23% against <i>E.</i> <i>coli</i> and 69.82 ± 2.79% against <i>S. aureus</i>	ACS Biomater. Sci. Eng. 2021, 7, 2268
High aspect ratio vertically aligned carbon nanotubes	100-3000 aspect ratio CNTs	Gram-positive and Gram- negative bacteria	Mechanobacterici dal effect	bactericidal rates of 99.3% for <i>P. aeruginosa</i> and 84.9% for <i>S. aureus</i>	ACS Nano 2018, 12, 7, 6657

Table S2. Antibacterial activity of meltblown fabric coated with nanoformulation

Area of the zone of inhibition in (mm ²) Diameter of plate – 90 mm					
Microorganism	Sample	Area of textile sample (mm²)	Area of Zone of inhibition (mm²)		
E.coli	MMO-Ag	190	273		
	WIWIO-Ag	95	200		
S. aureus	MMO A ~	176	300		
	MMO-Ag	189	325		

Table S3. Antiviral testing against bacteriophage virus

GI-		IS2 Ba	organism cteriophage		Log %e reduc reduc tion* tion* * **of		MS2 Bacteriophage		Log reduc tion	%redu ction of virus
Sample Identificati on	Avera PFU/carr 0 hours	ier at	Aver PFU/car 2 h(rier at	of virus	**of virus at 2h	Average PFU/carri at 24 h(A)		of virus at 24	at 24 h
	PFU*	log	PFU	log	at 2h		PFU	log	h	
Nonwoven fabric(coate d with nanoformula tion)	7.1×10 ⁴	4.85	5.60×10 ²	2.74	2.11	99.21	4.00×10 ³	3.60	1.25	94.36
Lab control(untr eated nonwoven fabric)			9.20×10 ⁴	4.96	4.96	0.00	9.60×10 ⁴	4.98	0.00	0.00

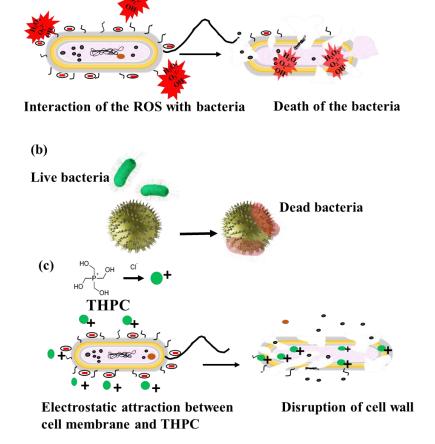

^{*}PFU: Plaque Forming Unit = No. of Microorganisms

Cytotoxicity Assay

The cytotoxicity of the MMO-Ag is evaluated by the Cytotoxicity Assay Method. The assay is done in a 96-well plate format in 3 wells for the sample. $1 \times 10e^4$ VeroE6 cells were plated per well and incubated at 37 °C overnight for the monolayer formation. The next day, cells were incubated with the MMO-Ag at 10 mg/mL, 1 mg/mL, and 0.5 mg/mL concentration. The cells without the MMO-Ag were the control. 24 and 48 hours later, cells were stained with Hoechst 33342 and Sytox orange dye. Images were taken at 10X magnification, 16 images per well, which covers 90% of the well area using Image Xpress Micro confocal (Molecular Devices). Hoechst 33342 nucleic acid stain is a popular cell-permeant nuclear counterstain that emits blue fluorescence when bound to dsDNA. It stains all the live and dead cells. Sytox orange dye stains nucleic acids in cells with compromised membranes. This stain is an indicator of cell death. First, the software will count the total number of cells in the Hoechst image. In the Sytox image, it will count, among Hoechst positive cells, how many cells are positive for Sytox. From the below results, we can conclude that MMO-Ag at 1 mg/mL and 0.5 mg/mL is not cytotoxic on VeroE6 cells.

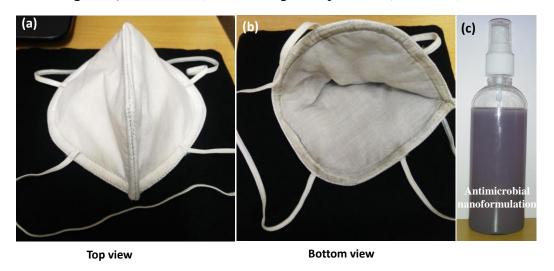
^{**} Log reduction Log (B/A) Percentage

^{***} reduction = $(B - A/B) \times 100$; where B is the number of viable test microorganisms on the control carriers immediately after inoculation and A Number of viable test microorganisms on the test carriers after the contact time.



 $\textbf{Figure S18}. \ (a) \ MMO\text{-}Ag \ 24 \ hours \ post\text{-}treatment \ (b) \ MMO\text{-}Ag \text{-}48 \ hours \ post\text{-}treatment$

Table S4. Reusability: The antibacterial activity of meltblown fabric coated with nanoformulation after various external treatments against *S. aureus* bacteria


Area of the zone of inhibition in millimetres ² (mm) ² Diameter of plate - 90mm					
Microorganism	Treatment method	Area of textile sample (mm²)	Area of Zone of inhibition(mm²)		
		12	60		
	UV treatment for 30 min	15	90		
		16	81		
		16	420		
S. aureus	Exposure of Sunlight 3h	12	380		
		25	441		
		8	90		
	Heating at 85°C	16	110		
		12	100		

(a)

Figure S19. Schematic of the plausible mechanism of antimicrobial action of MMO-Ag. (a) Effect of ROS (b) Mechano-bactericidal effect (c) Electrostatic interaction of THPC with the bacterial cell membrane.

MMO- Ag + hv
$$\longrightarrow$$
 e⁻ + h⁺
e⁻ + O₂ \longrightarrow •O₂⁻
h⁺ + H₂O \longrightarrow H⁺ + •OH
•O₂ + H⁺ \longrightarrow •HO₂
2•HO₂ \longrightarrow H₂O₂ +O₂
H₂O₂+ e⁻ \longrightarrow •OH+ OH⁻
Pathogen + (•OH, •O₂ , h⁺) \longrightarrow degraded products (H₂O+CO₂)

Figure S20. (a) Top view (b) Bottom view of the antimicrobial mask (c) Antimicrobial nanoformulation.

Table S5. Bacterial filtration efficiency results

Sample identification	Average Bacterial	BFE (%)
	Count	
Mask sample coated	20	99.35
with nanoformulation		
Positive control (plain	3.10×10^3	N. A
nonwoven fabric)		

Table S6. Particle filtration efficiency of developed face mask at 0.3 micron

Particulate filtration efficiency at 0.3	Nanomaterial coated mask
microns	
Percentage	99.67

Sample tested at: R.H.65%+/-2% and Temp.21°C+/-1°C