Sustainable synthesis of titanium based photocatalysts *via* surfactant templating: From kerosene to sunflower oil- Supporting Information

Reece M. D. Bristow^[1], Peter J. S. Foot^[1], James D. McGettrick^[2], Joseph C. Bear^[1] and Ayomi S. Perera^{[1]*}

^[1] Kingston University London, Department of Chemical and Pharmaceutical Sciences,

Faculty of Health, Science, Social Care and Education, Kingston Upon Thames, KT1 2EE,

UK.

^[2] SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.

*a.perera@kingston.ac.uk

Table of Contents

Figure S1: SEM images for samples V (vegetable oil) and VT80 (vegetable oil and Tween	R
80) indicating A-V microbeads, B-VT80 debris and C-Aeroxide P25 TiO2 clusters	2
Figure S2: FTIR data for samples V and VT80, showing key Ti-O-Si peak at ~950 cm ⁻¹	3
Figure S3: Raman results for samples V and VT80, as well as reference P25 indicating	
typical titanosilicate and TiO ₂ peaks	3
Figure S4: Results of N2-based porosity experiments for V and VT80 showing A-	
Adsorption-desorption isotherms and B- BJH plots.	4

Figure S5: A-Kubelka-Munk results and B- Associated tauc plots for samples V, VT80, US
Nano TiO ₂ , Aeroxide P25 TiO ₂ and Silica
Figure S6: Chemical structure of Rhodamine B, the selected model pollutant
Figure S7: Adsorption-photocatalysis results for VT80 showing A- Concentration vs. time
<u>and B – The associated C/C₀ graphs.</u>
Figure S8: Full UV-Vis spectrum of Rhodamine B under photocatalysis using sample S
(sunflower oil) as catalyst. This demonstrates the degradation of Rhodamine B over time5
Figure S9: Photocatalysis results for Aeroxide P25 TiO ₂ , showing A- Concentration against
time and B- The associated C/C_0 graph. Note that the solution concentration was 5 mg/L6
Figure S10: Natural log of concentration vs. Time for the KS80 experiment, used to calculate
the rate of reaction. A straight line here suggests pseudo first order kinetics
Figure S11: Natural logs vs. time for -30- 60 mins for A- Sample S and B- Sample ST80.
These were used to calculate rates of reaction between specific times7
Figure S12 : The proposed photocatalytic mechanism for the generation of OH• and $O_2^{-\bullet}$
<u>radicals.</u> 7
Table S1: Complete viscometry data for all templating solutions (after mixing at 1000 rpm at
<u>80 °C).</u>

Figure S1: SEM images for samples V (vegetable oil) and VT80 (vegetable oil and Tween®
80) indicating A- V microbeads, B- VT80 debris and C- Aeroxide P25 TiO₂ clusters.

Figure S2: FTIR data for samples V and VT80, showing key Ti-O-Si peak at ~950 cm⁻¹.

Figure S3: Raman results for samples V and VT80, as well as reference P25 indicating typical titanosilicate and TiO_2 peaks.

Figure S4: Results of N2-based porosity experiments for V and VT80 showing A-

Adsorption-desorption isotherms and B- BJH plots.

Figure S5: A-Kubelka-Munk results and B- Associated tauc plots for samples V, VT80, US Nano TiO₂, Aeroxide P25 TiO₂ and Silica.

Figure S6: Chemical structure of Rhodamine B, the selected model pollutant.

Figure S7: Adsorption-photocatalysis results for VT80 showing A- Concentration *vs*. time and B – The associated C/C_0 graphs.

Figure S8: Full UV-Vis spectrum of Rhodamine B under photocatalysis using sample S (sunflower oil) as catalyst. This demonstrates the degradation of Rhodamine B over time.

Figure S9: Photocatalysis results for Aeroxide P25 TiO_2 , showing A- Concentration against time and B- The associated C/C₀ graph. Note that the solution concentration was 5 mg/L.

Figure S10: Natural log of concentration *vs.* time for the KS80 experiment, used to calculate the rate of reaction. A straight line here suggests pseudo first order kinetics.

Figure S11: Natural logs *vs.* time for -30- 60 mins for A- Sample S and B- Sample ST80. These were used to calculate rates of reaction between specific times.

Figure S12: The proposed photocatalytic mechanism for the generation of OH^{\bullet} and $O_2^{-\bullet}$ radicals.

Table S1: Complete viscometry data for all templating solutions (after mixing at 1000 rpm at80 °C).

Sample	KS80	V	VT80	S	ST80
Viscosity (cP)	3.12	12.2	23.2	7.92	18.1
Torque (%)	5.2	20.4	38	13.2	30.1