Sustainable synthesis of titanium based photocatalysts via surfactant templating: From kerosene to sunflower oil- Supporting Information

Reece M. D. Bristow[1], Peter J. S. Foot[1], James D. McGettrick[2], Joseph C. Bear[1] and Ayomi S. Perera[1]*

[1] Kingston University London, Department of Chemical and Pharmaceutical Sciences, Faculty of Health, Science, Social Care and Education, Kingston Upon Thames, KT1 2EE, UK.

[2] SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.

*a.perera@kingston.ac.uk

Table of Contents

Figure S1: SEM images for samples V (vegetable oil) and VT80 (vegetable oil and Tween® 80) indicating A- V microbeads, B- VT80 debris and C- Aeroxide P25 TiO\textsubscript{2} clusters.2

Figure S2: FTIR data for samples V and VT80, showing key Ti-O-Si peak at ~950 cm-1.............3

Figure S3: Raman results for samples V and VT80, as well as reference P25 indicating typical titanosilicate and TiO\textsubscript{2} peaks. ..3

Figure S4: Results of N\textsubscript{2}-based porosity experiments for V and VT80 showing A- Adsorption-desorption isotherms and B- BJH plots. ..4
Figure S5: A-Kubelka-Munk results and B- Associated tauc plots for samples V, VT80, US Nano TiO$_2$, Aeroxide P25 TiO$_2$ and Silica.

Figure S6: Chemical structure of Rhodamine B, the selected model pollutant.

Figure S7: Adsorption-photocatalysis results for VT80 showing A- Concentration vs. time and B – The associated C/C$_0$ graphs.

Figure S8: Full UV-Vis spectrum of Rhodamine B under photocatalysis using sample S (sunflower oil) as catalyst. This demonstrates the degradation of Rhodamine B over time.

Figure S9: Photocatalysis results for Aeroxide P25 TiO$_2$, showing A- Concentration against time and B- The associated C/C$_0$ graph. Note that the solution concentration was 5 mg/L.

Figure S10: Natural log of concentration vs. Time for the KS80 experiment, used to calculate the rate of reaction. A straight line here suggests pseudo first order kinetics.

Figure S11: Natural logs vs. time for -30- 60 mins for A- Sample S and B- Sample ST80. These were used to calculate rates of reaction between specific times.

Figure S12: The proposed photocatalytic mechanism for the generation of OH* and O$_2$• radicals.

Table S1: Complete viscometry data for all templating solutions (after mixing at 1000 rpm at 80 °C).

Figure S1: SEM images for samples V (vegetable oil) and VT80 (vegetable oil and Tween® 80) indicating A- V microbeads, B- VT80 debris and C- Aeroxide P25 TiO$_2$ clusters.
Figure S2: FTIR data for samples V and VT80, showing key Ti-O-Si peak at ~950 cm⁻¹.

Figure S3: Raman results for samples V and VT80, as well as reference P25 indicating typical titanosilicate and TiO₂ peaks.
Figure S4: Results of N$_2$-based porosity experiments for V and VT80 showing A- Adsorption-desorption isotherms and B- BJH plots.

Figure S5: A-Kubelka-Munk results and B- Associated tauc plots for samples V, VT80, US Nano TiO$_2$, Aeroxide P25 TiO$_2$ and Silica.

Figure S6: Chemical structure of Rhodamine B, the selected model pollutant.
Figure S7: Adsorption-photocatalysis results for VT80 showing A - Concentration vs. time and B – The associated C/C₀ graphs.

Figure S8: Full UV-Vis spectrum of Rhodamine B under photocatalysis using sample S (sunflower oil) as catalyst. This demonstrates the degradation of Rhodamine B over time.
Figure S9: Photocatalysis results for Aeroxide P25 TiO$_2$, showing A- Concentration against time and B- The associated C/C$_0$ graph. Note that the solution concentration was 5 mg/L.

Figure S10: Natural log of concentration vs. time for the KS80 experiment, used to calculate the rate of reaction. A straight line here suggests pseudo first order kinetics.
Figure S11: Natural logs vs. time for -30- 60 mins for A- Sample S and B- Sample ST80. These were used to calculate rates of reaction between specific times.

Figure S12: The proposed photocatalytic mechanism for the generation of OH• and O2• radicals.
Table S1: Complete viscometry data for all templating solutions (after mixing at 1000 rpm at 80 °C).

<table>
<thead>
<tr>
<th>Sample</th>
<th>KS80</th>
<th>V</th>
<th>VT80</th>
<th>S</th>
<th>ST80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (cP)</td>
<td>3.12</td>
<td>12.2</td>
<td>23.2</td>
<td>7.92</td>
<td>18.1</td>
</tr>
<tr>
<td>Torque (%)</td>
<td>5.2</td>
<td>20.4</td>
<td>38</td>
<td>13.2</td>
<td>30.1</td>
</tr>
</tbody>
</table>