Supporting Information

Cationic and Oxygen Defects Modulation for Tailoring Bandgap and Room Temperature Ferromagnetism of CuO via Multiple d-Block Cations

Md Shafayatul Islam¹, Koushik Roy Chowdhury¹, Sheikh Manjura Hoque², and Ahmed Sharif1^{1*}

¹Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000

²Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh

*Email: asharif@mme.buet.ac.bd

Defect Notation

Kröger-Vink notation is used to write simple equations to describe the formation of point defects and their interaction. The necessary explanation of the notation Summary for, S_P^c :

S: Species

- P: Position in the crystal
- c: Charge relative to the perfect crystal

Charge notation:

- Positive: point (*)
- Negative: dash (')
- Neutral: *x*

Structural Information

Sample	CuO	CuO-a	CuO-b		CuO-c	
Constituent phases	CuO	CuO	CuO	Cu	CuO	Cu
Space group	C2/c(15)	C2/c(15)	C2/c(15)	Fm-3m(225)	C2/c(15)	Fm-3m(225)
Unit cell parameter	a =4.6853 Å	a = 4.6887 Å	a = 4.6916 Å	a = 3.6062 Å	a =4.6887 Å	a = 3.6195 Å
	b =3.4240 Å	b=3.42 Å	b =3.4211 Å		b = 3.4221 Å	
	c =5.1317 Å	c =5.1295 Å	c =5.1326 Å		c = 5.1292 Å	
	β =99.402°	$\beta = 99.515^{\circ}$	$\beta = 99.471^{\circ}$		$\beta = 99.456^{\circ}$	
	V =81.219 Å ³	V = 81.121 Å ³	V = 81.256 Å ³	$V = 46.898 \text{ Å}^3$	V = 81.181 Å ³	V = 47.418 Å ³
Rietveld factors	$R_{exp} = 5.845$	$R_{exp} = 5.360$	$R_{exp} = 7.011$		$R_{exp} = 6.464$	
	$R_p = 6.19956$	$R_p = 6.25719$	$R_p = 6.6287$		$R_p = 6.77898$	
	$R_{wp} = 8.92747$	$R_{wp} = 8.34275$	$R_{wp} = 8.91337$		$R_{wp} = 9.00301$	
	GoF = 2.33	GoF = 2.42	GoF = 1.62		GoF = 1.94	
Cu-O Bond length	1.95943 Å	1.96091 Å	1.96148 Å		1.96018 Å	
Average Cu-O-Cu Bond angle	104.017°	103.946°	103.942°		103.953°	

Table S1: Rietveld analysis of pristine CuO, CuO-a, CuO-b and CuO-c samples.

С

Fig. S1 Monoclinic C2/c structure of CuO NCs.

XPS analysis

Fig. S2 High-resolution spectrum of the Zn auger peak for CuO-c NCs.

Elemental analysis

Fig. S3 EDX Spectra of (a) Pristine CuO (b) CuO-a (c) CuO-b, and (d) CuO-c NCs.

Optical properties

Using electronegativity, the geometric mean of the electronegativity of the component atoms, the edges of the conduction and valence bands of semiconductors were determined.

$$\chi = \sqrt[N]{\chi_1^a \chi_2^b \dots \chi_{n-1}^u \chi_n^v} \dots SI$$

Where N is the total number of elements in the compound, χ_n is the electronegativity of specific element, and v is the mole fraction¹. The electronegativity of a specific element is the mean of the ionization potential (IP) and atomic electron affinity (EA)²:

$$\chi_n = \frac{IP + EA}{2} \dots S2$$

Table S2: Calculated values of IP, EA, and electronegativity for Cu and O atoms.

Elements	IP (eV)	EA (eV)	Electronegativity, χ_n (eV)
Cu	7.72	1.23	4.48
0	13.62	1.46	7.54

Hence, the electronegativity of CuO NCs using equation S1:

$$\chi_{Cu0} = \sqrt[2]{(4.48)^{1}_{Cu}(7.54)^{1}_{0}} = 5.81$$

Magnetic properties

Magnetization (M) – Temperature (T) curves in zero field cooling (ZFC) mode were measured to further investigate the materials' magnetic characteristics at low temperatures (Fig. S4). ZFC magnetization is a metastable condition from a physical perspective, meaning that the relaxation time of the particle moment is often larger than the magnetic measurement time scale³. For ZFC mode, the sample was cooled from 400

K to 5 K in the absence of any fields. Magnetization was monitored as temperatures rose from 5 K by applying a small magnetic field of 100 Oe. ZFC curves display a peak-like feature (as shown by the orange arrow in Fig. S4) at around 200, 110.02, 40.1, and 110.02 K for pristine CuO, CuO-a, CuO-b, and CuO-c, respectively, after which the magnetic moments have gained enough thermal energy to flip randomly⁴.

Fig. S4 Thermomagnetization (M–T) curves in ZFC mode

Thus, this peak temperature suggests an initiation of paramagnetism in the inner grains from the antiferromagnetic ordering of the bulk Cu-O-Cu chain⁵. With increasing particle size, the peak in ZFC becomes broader, which explains the broad nature of the pristine CuO peak noticed in ZFC curves⁶. A small amount of negative magnetization is observed at the low-temperature ZFC curve for CuO-c, which can be assigned to remnant magnetization present in the NCs that is not compensated by the 100 Oe field or the trapping of a small negative field in the NCs.

References

- Nethercot, A. H. Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts. *Phys. Rev. Lett.* **1974**, *33* (18), 1088–1091. https://doi.org/10.1103/PhysRevLett.33.1088.
- (2) Islam, Md. R.; Zubair, M. A.; Bashar, M. S.; Rashid, A. K. M. B. Bi0.9Ho0.1FeO3/TiO2 Composite Thin Films: Synthesis and Study of Optical, Electrical and Magnetic Properties. *Sci Rep* 2019, 9 (1), 5205. https://doi.org/10.1038/s41598-019-41570-x.
- (3) Paswan, S. K.; Kumari, S.; Kar, M.; Singh, A.; Pathak, H.; Borah, J. P.; Kumar, L. Optimization of Structure-Property Relationships in Nickel Ferrite Nanoparticles Annealed at Different Temperature. *Journal of Physics and Chemistry of Solids* 2021, 151, 109928. https://doi.org/10.1016/j.jpcs.2020.109928.
- (4) Punnoose, A.; Magnone, H.; Seehra, M. S.; Bonevich, J. Bulk to Nanoscale Magnetism and Exchange Bias in CuO Nanoparticles. *Phys. Rev. B* 2001, 64 (17), 174420. https://doi.org/10.1103/PhysRevB.64.174420.
- (5) Manna, S.; De, S. K. Room Temperature Ferromagnetism in Fe Doped CuO Nanorods. Journal of Magnetism and Magnetic Materials 2010, 322 (18), 2749–2753. https://doi.org/10.1016/j.jmmm.2010.04.020.
- (6) Ajroudi, L.; Mliki, N.; Bessais, L.; Madigou, V.; Villain, S.; Leroux, Ch. Magnetic, Electric and Thermal Properties of Cobalt Ferrite Nanoparticles. *Materials Research Bulletin* 2014, 59, 49–58. https://doi.org/10.1016/j.materresbull.2014.06.029.