Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

\

Experimental and theoretical exploration of the new stilbazolium family single crystal grown by the integration of novel anion for optical limiting and optoelectronic applications

Sekar Anand¹ and Muthurakku Usha Rani^{1*} School of Advanced Sciences Vellore Institute of technology Vellore – 632014 India Email: Usharani.m@vit.ac.in

Atoms	Bond length
C(1)-C(2)	1.381(3)
C(1)-C(6)	1.396(3)
C(1)-N(1)	1.426(3)
C(2)-C(3)	1.368(3)
C(2)-H(2)	0.9300
C(3)-C(4)	1.389(3)
C(3)-H(3)	0.9300
C(4)-N(3)	1.367(3)
C(4)-C(5)	1.400(3)
C(5)-C(6)	1.376(3)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-C(8)	1.377(3)
C(7)-C(12)	1.390(3)
C(7)-N(2)	1.448(2)
C(8)-C(9)	1.375(3)
C(8)-H(8)	0.9300
C(9)-C(10)	1.383(3)
C(9)-H(9)	0.9300
C(10)-C(11)	1.385(3)
C(10)-S(1)	1.7764(19)
C(11)-C(12)	1.393(3)
С(11)-Н(11)	0.9300
С(12)-Н(12)	0.9300
N(1)-N(2)	1.232(2)
N(3)-H(3B)	0.87(3)
N(3)-H(3A)	0.81(3)
O(1)-S(1)	1.370(6)
O(2)-S(1)	1.588(4)
O(3)-S(1)	1.355(4)
C(13)-N(5)	1.476(3)
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600

Atoms	Bond length
C(14)-C(15)	1.360(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.397(3)
С(15)-Н(15)	0.9300
C(16)-C(17)	1.402(3)
C(16)-C(19)	1.446(3)
C(17)-C(18)	1.358(3)
С(17)-Н(17)	0.9300
C(18)-N(5)	1.349(3)
C(18)-H(18)	0.9300
C(19)-C(20)	1.337(3)
С(19)-Н(19)	0.9300
C(20)-C(21)	1.444(3)
C(20)-H(20)	0.9300
C(21)-C(22)	1.390(3)
C(21)-C(26)	1.398(3)
C(22)-C(23)	1.370(3)
С(22)-Н(22)	0.9300
C(23)-C(24)	1.402(3)
С(23)-Н(23)	0.9300
C(24)-N(4)	1.368(2)
C(24)-C(25)	1.408(3)
C(25)-C(26)	1.373(3)
C(25)-H(25)	0.9300
C(26)-H(26)	0.9300
C(27)-N(4)	1.453(3)
C(27)-H(27A)	0.9600
C(27)-H(27B)	0.9600
C(27)-H(27C)	0.9600
C(28)-N(4)	1.446(3)
C(28)-H(28A)	0.9600
C(28)-H(28B)	0.9600
C(28)-H(28C)	0.9600

Table 1: Bond lengths of DMMA crystal

Atoms	Angle
C(2)-C(1)-C(6)	118.82(19)
C(2)-C(1)-N(1)	115.23(19)
C(6)-C(1)-N(1)	125.95(19)
C(3)-C(2)-C(1)	121.1(2)
C(3)-C(2)-H(2)	119.5
C(1)-C(2)-H(2)	119.5
C(2)-C(3)-C(4)	120.8(2)
C(2)-C(3)-H(3)	119.6
C(4)-C(3)-H(3)	119.6
N(3)-C(4)-C(3)	120.9(2)
N(3)-C(4)-C(5)	120.7(2)
C(3)-C(4)-C(5)	118.38(19)
C(6)-C(5)-C(4)	120.6(2)
C(6)-C(5)-H(5)	119.7
C(4)-C(5)-H(5)	119.7
C(5)-C(6)-C(1)	120.3(2)
C(5)-C(6)-H(6)	119.8
C(1)-C(6)-H(6)	119.8
C(8)-C(7)-C(12)	120.00(18)
C(8)-C(7)-N(2)	114.62(19)
C(12)-C(7)-N(2)	125.37(19)
C(9)-C(8)-C(7)	120.5(2)
C(9)-C(8)-H(8)	119.7
C(7)-C(8)-H(8)	119.7
C(8)-C(9)-C(10)	120.1(2)
C(8)-C(9)-H(9)	120.0
C(10)-C(9)-H(9)	120.0
C(9)-C(10)-C(11)	119.85(18)
C(9)-C(10)-S(1)	119.41(16)
C(11)-C(10)-S(1)	120.67(16)
C(10)-C(11)-C(12)	120.0(2)
С(10)-С(11)-Н(11)	120.0
С(12)-С(11)-Н(11)	120.0
C(7)-C(12)-C(11)	119.4(2)

Atoms	Angle
С(11)-С(12)-Н(12)	120.3
N(1)-N(2)-C(7)	112.46(18)
C(4)-N(3)-H(3B)	118(2)
C(4)-N(3)-H(3A)	114(2)
H(3B)-N(3)-H(3A)	125(3)
O(3)-S(1)-O(1)	121.2(4)
O(3)-S(1)-O(2)	106.5(3)
O(1)-S(1)-O(2)	107.4(4)
O(1)-S(1)-C(10)	108.3(3)
O(2)-S(1)-C(10)	103.13(17)
N(5)-C(13)-H(13A)	109.5
N(5)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
N(5)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
N(5)-C(14)-C(15)	120.91(19)
N(5)-C(14)-H(14)	119.5
C(15)-C(14)-H(14)	119.5
C(14)-C(15)-C(16)	121.6(2)
С(14)-С(15)-Н(15)	119.2
С(16)-С(15)-Н(15)	119.2
C(15)-C(16)-C(17)	115.65(18)
C(15)-C(16)-C(19)	120.45(19)
C(18)-C(17)-C(16)	121.0(2)
С(18)-С(17)-Н(17)	119.5
N(5)-C(18)-C(17)	121.4(2)
N(5)-C(18)-H(18)	119.3
С(17)-С(18)-Н(18)	119.3
С(20)-С(19)-Н(19)	117.9
С(16)-С(19)-Н(19)	117.9
C(19)-C(20)-C(21)	129.3(2)
С(19)-С(20)-Н(20)	115.3
C(21)-C(20)-H(20)	115.3

Atoms	Angle	N(4)-C(27)-H(27A)	109.5
C(22)-C(21)-C(20)	118.59(19)	Atoms	Angle
C(26)-C(21)-C(20)	124.94(18)	H(27A)-C(27)-H(27B)	109.5
C(23)-C(22)-C(21)	122.94(19)	N(4)-C(27)-H(27C)	109.5
С(23)-С(22)-Н(22)	118.5	H(27A)-C(27)-H(27C)	109.5
С(21)-С(22)-Н(22)	118.5	H(27B)-C(27)-H(27C)	109.5
C(22)-C(23)-C(24)	120.55(19)	N(4)-C(28)-H(28A)	109.5
С(22)-С(23)-Н(23)	119.7	N(4)-C(28)-H(28B)	109.5
C(24)-C(23)-H(23)	119.7	H(28A)-C(28)-H(28B)	109.5
N(4)-C(24)-C(23)	120.89(18)	N(4)-C(28)-H(28C)	109.5
N(4)-C(24)-C(25)	122.03(18)	H(28A)-C(28)-H(28C)	109.5
C(23)-C(24)-C(25)	117.06(18)	H(28B)-C(28)-H(28C)	109.5
C(26)-C(25)-C(24)	121.31(19)	C(24)-N(4)-C(28)	120.26(17)
C(26)-C(25)-H(25)	119.3	C(24)-N(4)-C(27)	119.54(17)
C(18)-N(5)-C(13)	120.15(19)	C(28)-N(4)-C(27)	115.68(17)
C(25)-C(26)-H(26)	119.2	C(14)-N(5)-C(18)	119.42(18)
С(21)-С(26)-Н(26)	119.2	C(14)-N(5)-C(13)	120.39(18)
		C(18)-N(5)-C(13)	120.15(19)

Table 2: Bond angle of DMMA crystal

Faces (hkl)	d _{hkl} (Å)	Calculated relative growth rates from BFDH law	Morphological importance (M.I.) by BFDH law
(00 ¹), (001)	26.99	1.000	1.000
(100), (100)	12.12	2.226	0.449
(101), (101)	11.05	2.442	0.409
(010), (010 ₎	7.552	3.573	0.279
(011), (011)	7.275	3.709	0.269

Table 3: Morphological importance planes of DMMA crystal

Sample	E _d (eV)	E ₀ (eV)	$\mathbf{F} (\mathrm{eV})^2$	n ₀	M-1	M_3

name						
DMMA	3.753	1.987	7.459	1.699	1.888	0.4780

Donor	Acceptor	E(2) (kcal/mol)
$\pi(C_1-C_9)$	$\pi^*(C_2-C_4)$	23.68
	$\pi^*(C_6-C_7)$	18.12
	$\pi^*(N_{21}-N_{22})$	19.14
$\pi(C_2-C_4)$	$\pi^*(C_1-C_9)$	14.64
	$\pi^*(C_6-C_7)$	23.03
π (C ₆ -C ₇)	$\pi * (C_1 - C_9)$	26.65
	$\pi * (C_2 - C_4)$	14.64
π (C ₁₁ -C ₁₂)	$\pi * (C_{14}-C_{16})$	20.92
	$\pi * (C_{17}-C_{19})$	18.36
	$\pi * (N_{21} - N_{22})$	21.97
π (C ₁₄ -C ₁₆)	$\pi * (C_{11}-C_{12})$	19.35
	$\pi * (C_{17}-C1_9)$	19.66
LP(2) O ₂₅	$\sigma^*(C_{16}-S_{27})$	10.10
	σ*(O ₂₄ -S ₂₇)	11.61
$\pi(C38 - C43)$	$\pi^*(C_{34}-C_{36})$	16.68
	$\pi^*(C_{39}-C_{41})$	14.91
	$\pi^*(C_{45}-C_{47})$	26.97
$\pi(C_{45}-C_{47})$	$\pi^*(C_{38}-C_{43})$	18.38
	$\pi^*(C_{48}-C_{50})$	20.70
	$\pi^*(C_{38}-C_{43})$	18.66
$\pi(C_{48}-C_{50})$	LP*(1) C ₅₂	42.88
$\pi(C_{53} - \overline{C_{55}})$	LP*(1) C ₅₂	41.29
LP(1) N ₆₆	$\pi^* (C_{34}-C_{36})$	35.80
LP(1) N ₆₆	$\pi^*(C_{39}-C_{41})$	36.27

Table 4: Dispersive parameters of DMMA crystal

Table 5: Second order perturbation interaction energy values computed from the NBO analysis

4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methyl-pyridinium 4-Aminoazobenzene-4'-sulfonate

Figure 1: Synthesis of DMMA powder

Figure 2: Solubility trace of DMMA and image of the grown crystal

e 4: Refractive index dispersion plot of DMMA crystal using Sellmeier model

Figure 5: Mulliken atomic charge diagram