Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Boron-imidazolate coordination networks with 3d transition metals for enhanced CO₂ adsorption capability

Takeshi Kato,[†] Ikuho Akiyama,[†] Fumika Mori,[†] Ayumu Shinohara,[†] Yudai Ogura,[†] Akitaka Ito,[†] and Masataka Ohtani^{†,*}

> [†]School of Engineering Science, Kochi University of Technology 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan E-mail: ohtani.masataka@kochi-tech.ac.jp (M.O.)

Supporting Figures

Figure S1. SEM and optical microscope images of the obtained BIF-3-Cu crystals prepared by (I): previously reported BIF-3-Cu synthesis method in Ref. 4, (II): using 2-amino-1-butanol as a reaction solvent at 100 °C for 4 days, (III): using CuCl as a metal salt, (IV): heating for 2 days, (V): heating 24 hours and (VI): heating 24 hours with adding NaI.

	Previous study ^{S1}	This study
Formula	$C_{16}H_{20}BCuN_8$	$C_{16}H_{20}BCuN_8$
Formula weight	398.75	398.75
<i>T</i> (K)	293	93.15
Crystal system	cubic	cubic
Space group	P-43n	P-43n
<i>a</i> (Å)	16.0184(2)	15.9474(4)
<i>b</i> (Å)	16.0184(2)	15.9474(4)
<i>c</i> (Å)	16.0184(2)	15.9474(4)
α (deg)	90	90
β (deg)	90	90
γ (deg)	90	90
$V(Å^3)$	4110.15	4055.7(3)
Ζ	6	6
$D_{\rm cal}~({ m g~cm^{-3}})$	0.967	0.980
μ (mm ⁻¹)	0.809	0.820
F (000)	1236	1236.0
crystal size (mm)	N/A	$0.156 \times 0.111 \times 0.072$
2θ range (deg)	3.60-50.08	5.108-52.718
reflns collected	14833	5449
indep reflns/R _{int}	1222 / 0.1167	1329 / 0.0317
GOF on F^2	1.159	1.151
$R_1, WR_2 [I > 2\sigma(I)]$	0.0605, 0.1537	0.0426, 0.1289
R_1 , w R_2 (all data)	0.1001, 0.1755	0.0449, 0.1316

 Table S1. Crystallographic data and structure refinement details of BIF-3-Cu

	Specific surface area (m ² /g)	Pore volume (cm ³ /g)
This study	1000	0.60
Solvothermal synthesis ^{S1}	182.3	N/A
Mechanochemical synthesis ^{S2}	935	N/A

Table S2. Comparison of specific surface area of BIF-3-Cu

Figure S2. TG curves of the prepared BIF-3-Cu crystals, (I): using 2-amino-1-butanol as the reaction solvent at 100 °C for 4 days and (II): with triethylamine addition and at 50/50 (= MeOH/MeCN, v/v).

Figure S3. SEM/EDX mapping images of BIF-3-Cu.

Figure S4. Photograph of the obtained BIF-3-Cu.

Figure S5. PXRD patterns of BIF-3-Cu crystals before and after soaking in the acetonitrile solution of tetracyanoethylene (TCNE) for 24 hours. (I): as-prepared sample (before soaking) and after soaking in (II): 5 mmol L^{-1} , (III): 25 mmol L^{-1} , (VI): 50 mmol L^{-1} TCNE solution.

Figure S6. Rietveld refinement of BIF-3-Zn.

Figure S7. SEM/EDX mapping images of BIF-3-Zn.

Figure S8. ¹H-NMR spectra of (a) $H[B(2-MIm)_4)]$ and (b) recovered ligand from prepared BIF-3-Zn crystal decomposed by *d*-HCl D₂O solution. *¹ indicates an internal standard (DMSO) and *² indicates the reaction solvent.

Figure S9. N₂ adsorption measurements (77 K) of (I): BIF-3-Zn and (II): ZIF-8.

Figure S10. Rietveld refinement of BIF-3-Co.

Figure S11. SEM/EDX mapping images of BIF-3-Co.

Figure S12. CO₂ adsorption cycle test of BIF-3-Zn (red: 1st cycle, blue: 2nd cycle, green: 3rd cycle).

Supporting Reference

- S1. J. Zhang, T. Wu, C. Zhou, S. Chen, P. Feng and X. Bu, *Angew. Chem. Int. Ed.*, 2009, **48**, 2542–2545.
- S2. C. B. Lennox, J. L. Do, M. Arhangelskis, H. M. Titi, O. K. Farha and T. Friscic, *Chem. Sci.*, 2021, **12**, 14499-14506.