Supplementary Information for

Blending Recombinant Amyloid Silk Proteins Generate Composite Fibers with Tunable Mechanical Properties

Shri Venkatesh Subramani¹, Jingyao Li¹, Kok Zhi Lee¹, Natalie Fisher², Fuzhong Zhang^{1,3,4*}

¹Department of Energy, Environmental and Chemical Engineering,

² Department of Materials Science and Mechanical Engineering.

³ Institute of Materials Science & Engineering

⁴ Division of Biological & Biomedical Sciences

Washington University in St. Louis, Saint Louis, MO 63130, USA

*Correspondence to: fzhang@seas.wustl.edu

Supplementary Figure 1. Strength vs Protein ratio plot of various composite fibers.

The above plot shows linear change in ultimate strength with increasing percentages of a protein component across all three composites.

Supplementary Figure 2. Coomassie blue-stained SDS-PAGE gel of purified proteins.

Lane L, molecular weight marker with their sizes labeled on the left. Lane 1, 16xFGAILSS protein. Lane 2, 16xGDVIEV protein. Lane 3, ^NM-16xFGA-^CM protein. Lane 4, ^NM-16xAAA-^CM protein. Lane 5, 48xFGAILSS protein.

Supplementary Figure 3. Representative optical images of composite fibers. Scale bars (black lines) represent 20 μm. a) 75:25 16xFGA/48xFGA b) 50:50 16xFGA/48xFGA c) 25:75 16xFGA/48xFGA d) 85:15 16xFGA/16xGDV e) 75:25 16xFGA/16xGDV f) 75:25 ^NM-16xFGA-^CM/^NM-16xAAA-^CM g) 50:50 ^NM-16xFGA-^CM/^NM-16xAAA-^CM

Supplementary Figure 4. Representative SEM images of composite fibers. Scale bars (black lines) represent 10 μm. a) 75:25 16xFGA/48xFGA b) 50:50 16xFGA/48xFGA c) 25:75 16xFGA/48xFGA d) 85:15 16xFGA/16xGDV e) 75:25 16xFGA/16xGDV f) 75:25 ^NM-16xFGA-^CM/^NM-16xAAA-^CM g) 50:50 ^NM-16xFGA-^CM/^NM-16xAAA-^CM

mentary Figure 5. Stress-strain curves of individual HMW/LMW composite fibers.

pplementary Figure 6. Stress-strain curves of individual protein charge-based composite

fibers.

mentary Figure 7. Stress-strain curves of individual mechanical behavior-based composite fibers.

Supplementary Figure 8. FTIR analysis of pure protein fibers. The FTIR spectra from the pure protein fibers were used to deconvolute the amide I peak into a set of 11 Gaussian peaks to calculate the β -sheet content based on previously reported methods (see Methods).

Supplementary Figure 9. Deconvoluted β -sheet content of pure vs. composite protein fibers. Comparison of β -sheet content in the pure vs. composite protein fibers calculated based on amide 1 peak deconvolution from their FTIR spectra. The mean percentages were obtained by averaging the values from 3 fibers and the error bars denote the standard deviation of those values.

Supplementary Figure 10. Raman spectromicroscopy analysis of composite fibers. Raman spectra were acquired for fibers oriented perpendicular (red line) or parallel (black line) to the polarization of the incident laser. Spectra were normalized to the intensity of the peak at 1460 cm⁻¹, which corresponds to orientation insensitive CH_2 bending (see Methods). Spectra shown are the average of spectra acquired on three separate fibers for each fiber state. As a measure of orientation sensitivity, the average ratio of the amide I peak (1670 cm⁻¹) intensity at 0° to that at 90° is shown above each spectrum.

Supplementary Figure 11. Peak intensity ratio of pure vs. composite protein fibers.

Comparison of the peak intensity ratio at 1670 cm⁻¹ in the pure vs. composite protein fibers. The mean values were obtained by averaging the values from 3 fibers and the error bars denote the standard deviation of those values.

Supplementary Table 1. Amino acid sequences of the proteins used in this study.

Protein	Amino acid sequence
16xFGAILSS	MAKTKGTASGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQG
	TSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGL
	GGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGF
	GAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGG
	AGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYG
	GLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGT
	SGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLG
	GQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFG
	AILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGA
	GQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGG
	LGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTS
	GRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGG
	QGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGA
	ILSSGGAGQGGYGGLGSQGTSSGHHHHHHHHHH
48xFGAILSS	MAKTKGTASGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQG
	TSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGL
	GGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGF
	GAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGG
	AGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYG
	GLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGT
	SGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLG
	GQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFG
	AILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGA
	GQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGG
	LGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTS
	GRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGG
	QGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGA
	ILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAG
	QGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGL
	GSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSG
	RGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQ
	GAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAIL
	SSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQ
	GGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLG
	SQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGR
	GGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQG
	AGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILS
	SGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQG

	GYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGS OGTSGRGGLGGOGAGFGAILSSGGAGOGGYGGLGSOGTSGRG
	GLGGOGAGFGAILSSGGAGOGGYGGLGSOGTSGRGGLGGOGA
	GFGAILSSGGAGOGGYGGLGSOGTSGRGGLGGOGAGFGAILSS
	GGAGOGGYGGLGSOGTSGRGGLGGOGAGFGAILSSGGAGOGG
	YGGLGSOGTSGRGGLGGOGAGFGAILSSGGAGOGGYGGLGSO
	GTSGRGGLGGOGAGFGAILSSGGAGOGGYGGLGSOGTSGRGG
	FGAU SSGGAGOGGYGGI GSOGTSGRGGI GGOGAGEGAU SSG
	GAGOGGYGGLGSOGTSGRGGLGGOGAGFGAILSSGGAGOGGY
	GGLGSOGTSGRGGLGGOGAGFGAILSSGGAGOGGYGGLGSOG
	TSGRGGI GGOGAGEGAIL SSGGAGOGGYGGI GSOGTSGRGGI
	GGOGAGEGAILSSGGAGOGGYGGLGSOGTSGRGGLGGOGAGE
	GAIL SSGGAGOGGYGGI GSOGTSGRGGI GGOGAGEGAIL SSGG
	AGOGGYGGI GSOGTSGRGGI GGOGAGFGAILSSGGAGOGGYG
	GLGSOGTSGRGGLGGOGAGFGAILSSGGAGOGGYGGLGSOGT
	сторбатракаатаабана антеррация со госторбат
16xGDVIEV	MAKTKGTASGRGGLGGQGAGGDVIEVGGAGQGGYGGLGSQG
	TSGRGGLGGQGAGGDVIEVGGAGQGGYGGLGSQGTSGRGGLG
	GQGAGGDVIEVGGAGQGGYGGLGSQGTSGRGGLGGQGAGGD
	VIEVGGAGQGGYGGLGSQGTSGRGGLGGQGAGGDVIEVGGAG
	QGGYGGLGSQGTSGRGGLGGQGAGGDVIEVGGAGQGGYGGL
	GSQGTSGRGGLGGQGAGGDVIEVGGAGQGGYGGLGSQGTSGR
	GGLGGQGAGGDVIEVGGAGQGGYGGLGSQGTSGRGGLGGQG
	AGGDVIEVGGAGQGGYGGLGSQGTSGRGGLGGQGAGGDVIEV
	GGAGQGGYGGLGSQGTSGRGGLGGQGAGGDVIEVGGAGQGG
	YGGLGSQGTSGRGGLGGQGAGGDVIEVGGAGQGGYGGLGSQ
	GTSGRGGLGGQGAGGDVIEVGGAGQGGYGGLGSQGTSGRGGL
	GGQGAGGDVIEVGGAGQGGYGGLGSQGTSGRGGLGGQGAGG
	DVIEVGGAGQGGYGGLGSQGTSGRGGLGGQGAGGDVIEVGGA
	GQGGYGGLGSQGTSSGHHHHHHHHHH
M ^N -16xFGA-M ^C	MAKTKGTSEEYKGGYYPGNTYHYHSGGSYHGSGY
	HGGYKGKYYASGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQ
	GGQGAGFGAILSSGGAGQGGYGGLGSQGISGRGGLGGQGAGF
	AILSSUGAUGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGA
	GQGGYGGLGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGG

	LGSQGTSGRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTS
	GRGGLGGQGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGG
	QGAGFGAILSSGGAGQGGYGGLGSQGTSGRGGLGGQGAGFGA
	ILSSGGAGQGGYGGLGSQGTSKAKKYYYKYKNSGKYKYLKKAR
	KYHR KGYKKYYGGGSSSGHHHHHHHHHH
M ^N -16xAAA-M ^C	MAKTKGTSEEYKGGYYPGNTYHYHSGGSYHGSGY
	HGGYKGKYYASGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQG
	TSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLG
	GQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAA
	AAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAG
	QGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGL
	GSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGR
	GGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQG
	AGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAA
	GGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGG
	YGGLGSQGTSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQG
	TSGRGGLGGQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLG
	GQGAGAAAAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAA
	AAAGGAGQGGYGGLGSQGTSGRGGLGGQGAGAAAAAGGAG
	QGGYGGLGSQGTSKAKKYYYKYKNSGKYKYLKKARKYHR
	KGYKKYYGGGSSSGHHHHHHHHHH

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m³)	(μm)
16FGA-1	202	3.9	34	43	17
16FGA-2	188	3.5	37	44	17
16FGA-3	173	4.1	36	40	17
16FGA-4	229	3.3	41	58	20
16FGA-5	252	5.0	35	55	19
16FGA-6	251	4.0	36	54	20
16FGA-7	214	2.0	47	53	16
16FGA-8	258	4.8	37	70	16
Average	221	3.8	38	52	18
Standard Deviation	32	0.9	4	10	1.5

Supplementary Table 2. Summary of mechanical properties of 16xFGAILLS fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m ³)	(µm)
75:25 16FGA/48FGA-1	253	4.6	29	57	19
75:25 16FGA/48FGA-2	260	4.2	48	101	19
75:25 16FGA/48FGA-3	250	3.8	33	62	19
75:25 16FGA/48FGA-4	261	3.5	40	73	17
75:25 16FGA/48FGA-5	247	1.2	46	65	18
75:25 16FGA/48FGA-6	281	3.4	41	81	19
75:25 16FGA/48FGA-7	252	3.4	40	61	18
75:25 16FGA/48FGA-8	240	4.5	36	53	18
Average	256	3.6	39	69	18
Standard Deviation	12	1.1	6	16	1

Supplementary Table 3. Summary of mechanical properties of 75:25 16xFGA/48xFGA fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m³)	(μm)
50:50 16FGA/48FGA-1	280	3.8	36	79	20
50:50 16FGA/48FGA-2	252	2.5	44	81	18
50:50 16FGA/48FGA-3	277	2.3	35	74	18
50:50 16FGA/48FGA-4	291	4.3	53	124	18
50:50 16FGA/48FGA-5	267	2.1	43	78	18
50:50 16FGA/48FGA-6	272	2.9	37	61	18
50:50 16FGA/48FGA-7	292	2.1	42	83	19
50:50 16FGA/48FGA-8	299	1.6	53	107	20
50:50 16FGA/48FGA-9	292	2.6	48	92	19
50:50 16FGA/48FGA-10	290	2.1	53	102	20
Average	281	2.6	44	88	19
Standard Deviation	14	0.8	7	18	0.9

Supplementary Table 4. Summary of mechanical properties of 50:50 16xFGA/48xFGA fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m ³)	(µm)
25:75 16FGA/48FGA-1	319	3.5	25	49	16
25:75 16FGA/48FGA-2	327	3.7	35	88	18
25:75 16FGA/48FGA-3	305	2.7	24	42	17
25:75 16FGA/48FGA-4	320	3.3	33	74	16
25:75 16FGA/48FGA-5	293	2.4	40	63	16
25:75 16FGA/48FGA-6	310	3.9	32	71	16
25:75 16FGA/48FGA-7	329	3.6	27	57	17
25:75 16FGA/48FGA-8	323	3.3	36	84	17
25:75 16FGA/48FGA-9	315	3.9	44	82	16
Average	316	3.4	33	68	17
Standard Deviation	11	0.5	7	16	0.7

Supplementary Table 5. Summary of mechanical properties of 25:75 16xFGA/48xFGA fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m³)	(µm)
48FGA-1	432	3.7	41	118	13.6
48FGA-2	422	4.7	49	135	13.8
48FGA-3	380	4.0	42	102	14.2
48FGA-4	428	3.7	43	114	14.4
48FGA-5	445	3.8	43	120	13.9
48FGA-6	482	4.9	47	153	13.9
48FGA-7	417	4.1	40	103	13.8
48FGA-8	419	4.5	29	83	14.1
Average	428	4.2	42	116	13.9
Standard Deviation	29	0.5	6	21	0.2

Supplementary Table 6. Summary of mechanical properties of 48xFGAILLS fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m³)	(μm)
16xGDV - 1	296	6.0	24	44	12
16xGDV - 2	258	3.2	35	56	12
16xGDV - 3	322	6.7	22	54	11
16xGDV - 4	311	7.3	23	50	11
16xGDV - 5	279	4.7	28	47	12
16xGDV - 6	228	5.3	45	62	10
16xGDV - 7	309	5.1	38	68	10
Average	286	5.5	31	54	11
Standard Deviation	34	1.3	9	8	0.7

Supplementary Table 7. Summary of mechanical properties of 16xGDVIEV fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m ³)	(µm)
85:15 FGA/GDV - 1	256	3.4	40	70	31
85:15 FGA/GDV - 2	260	3.4	36	62	27
85:15 FGA/GDV - 3	216	2.9	40	60	29
85:15 FGA/GDV - 4	287	3.5	41	74	26
85:15 FGA/GDV - 5	245	2.5	37	63	30
85:15 FGA/GDV - 6	245	3.5	41	68	24
85:15 FGA/GDV - 7	252	2.7	32	54	29
85:15 FGA/GDV - 8	296	1.8	43	82	26
85:15 FGA/GDV - 9	271	2.6	38	67	26
85:15 FGA/GDV - 10	306	3.1	36	71	26
Average	264	2.9	38	67	27
Standard Deviation	27	0.6	3	8	2.2

Supplementary Table 8. Summary of mechanical properties of 85:15 16xFGA/16xGDV fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m ³)	(µm)
75:25 FGA/GDV - 1	297	3.1	38	71	28
75:25 FGA/GDV - 2	348	4.0	38	84	26
75:25 FGA/GDV - 3	304	1.9	53	95	25
75:25 FGA/GDV - 4	296	2.6	42	76	28
75:25 FGA/GDV - 5	258	2.4	42	73	29
75:25 FGA/GDV - 6	278	3.6	37	68	28
75:25 FGA/GDV - 7	261	3.4	35	61	27
75:25 FGA/GDV - 8	255	3.4	57	88	28
75:25 FGA/GDV - 9	303	3.2	44	87	27
75:25 FGA/GDV - 10	255	3.6	44	78	27
Average	285	3.1	43	78	27
Standard Deviation	30	0.6	7	10	1.1

Supplementary Table 9. Summary of mechanical properties of 75:25 16xFGA/16xGDV fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m ³)	(µm)
M-FGA-M - 1	287	2.2	40	72	32
M-FGA-M - 2	357	2.7	38	89	29
M-FGA-M - 3	273	2.9	34	60	32
M-FGA-M - 4	330	2.6	45	93	30
M-FGA-M - 5	334	2.9	41	87	29
M-FGA-M - 6	325	3.1	45	101	31
Average	318	2.7	40	84	31
Standard Deviation	32	0.3	4	15	1.1

Supplementary Table 10. Summary of mechanical properties of ^NM-16xFGA-^CM fibers.

Supplementary Table 11. Summary of mechanical properties of 75:25 ^NM-16xFGA-^CM / ^NM-

16xAAA-^CM fibers.

Name	Peak Stress	Modulus	Strain at	Toughness	Diameter
	(MPa)	(GPa)	Break (%)	(MJ/m³)	(µm)
75:25 M-FGA-M/M-AAA-M - 1	258	2.0	57	90	33
75:25 M-FGA-M/M-AAA-M - 2	273	2.9	57	101	32
75:25 M-FGA-M/M-AAA-M - 3	274	2.2	65	110	31
75:25 M-FGA-M/M-AAA-M - 4	316	2.8	53	102	31
75:25 M-FGA-M/M-AAA-M - 5	307	2.3	53	101	31
75:25 M-FGA-M/M-AAA-M - 6	303	2.2	53	114	32
75:25 M-FGA-M/M-AAA-M - 7	284	1.9	60	106	32
75:25 M-FGA-M/M-AAA-M - 8	292	3.6	49	110	31
75:25 M-FGA-M/M-AAA-M - 9	321	2.3	53	104	28
Average	292	2.5	55	104	31
Standard Deviation	22	0.5	5	7	1.4

Supplementary Table 12. Summary of mechanical properties of 50:50 ^NM-16xFGA-^CM / ^NM-

16xAAA-^CM fibers.

Nama	Peak Stress	Modulus	Strain at	Toughness	Diameter
Iname	(MPa)	(GPa)	Break (%)	(MJ/m³)	(µm)
50:50 M-FGA-M/M-AAA-M - 1	167	2.2	140	184	33
50:50 M-FGA-M/M-AAA-M - 2	177	2.0	110	146	32
50:50 M-FGA-M/M-AAA-M - 3	190	2.3	97	151	31
50:50 M-FGA-M/M-AAA-M - 4	184	2.1	114	167	31
50:50 M-FGA-M/M-AAA-M - 5	169	1.8	120	161	33
50:50 M-FGA-M/M-AAA-M - 6	182	2.1	100	152	27
50:50 M-FGA-M/M-AAA-M - 7	158	2.5	114	142	29
50:50 M-FGA-M/M-AAA-M - 8	160	2.9	95	122	28
Average	173	2.2	111	153	30
Standard Deviation	12	0.3	15	21	2.2

Namo	Peak Stress	Modulus	Strain at	Toughness	Diameter
INAME	(MPa)	(GPa)	Break (%)	(MJ/m³)	(µm)
M-AAA-M - 1	134	1.3	135	144	38
M-AAA-M - 2	130	2.4	165	175	39
M-AAA-M - 3	118	1.8	125	120	39
M-AAA-M - 4	130	1.3	125	134	36
M-AAA-M - 5	132	2.4	215	225	42
M-AAA-M - 6	139	2.2	205	215	38
M-AAA-M - 7	119	1.3	140	135	39
M-AAA-M - 8	129	2.4	190	192	39
Average	129	1.9	163	167	39
Standard Deviation	7	0.5	37	40	1.5

Supplementary Table 13. Summary of mechanical properties of ^NM-16xAAA-^CM fibers.

Supplementary Note 1. Determination of overall charges for proteins used in charge-based

composites.

The protein charges reported in this study were determined using an online calculator tool (<u>www.protpi.ch</u>). The protein charge was calculated for 16-mer amyloid-silk proteins including the amyloid peptides, linker regions and His-tag.

These charges can also be manually calculated by summing up the charges carried by the ionizable groups in the amino acids (the N-terminus, C-terminus and the side chains of acidic and basic amino acids) at a neutral pH of 7.4 by considering their respective pKa values. The calculation of charges at pH 7.4 for the proteins used in charge-based composites (16xFGA & 16xGDV) is outlined below:

16xFGAILSS

Ionizable group	Amino acid	рКа	# of occurrences	Charge
N-terminus	Methionine	9.1	1	+1
C-terminus	Histidine	1.7	1	-1
Basic side chains	Arginine	12.1	16	+16
	Lysine	10.7	2	+2
	Histidine	6	10	0, since histidine's pI of 7.6 is very close to pH 7.4.
				Total charge = +18

16xGDVIEV

Ionizable group	Amino acid	рКа	# of occurrences	Charge
N-terminus	Methionine	9.1	1	+1
C-terminus	Histidine	1.7	1	-1
Acidic side chains	Aspartic acid	3.7	16	-16
	Glutamic acid	4.1	16	-16
Basic side chains	Arginine	12.1	16	+16
	Lysine	10.7	2	+2
	Histidine	6	10	0, since histidine's pI of 7.6 is very close to pH 7.4.
				Total charge = -14

Note, the table's method only give a rough estimation as it does not consider partial charges. For example, a fraction of Histidine groups at pH 7.4 is positively charged. Online calculators consider this fraction, thus often give charge values with decimals.