Supporting Information of "Enhanced Photocatalytic Water Splitting with Two-Dimensional van der Waals Heterostructures of BAs/WTeSe"

Hanifan BiBi¹, Abdul Jalil, Syed Zafar Illyas¹, Azeem Ghulam Nabi^{2,3,*}, Devis Di Tommaso^{3,4,*}

AFFILIATIONS

¹ Department of Physics, Allama Iqbal Open University, Islamabad, 44000, Pakistan

² Department of Physics, Hafiz Hayat Campus, University of Gujrat, Gujrat, 50700, Pakistan

³ Department of Chemistry, School of Physical and Chemical Sciences, Mile End Road, London, Queen Mary University of London, E1 4NS, UK

⁴ Digital Environment Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London, E1 1HH, UK

Table of Contents

Phonon spectra calculations	3
Ab initio molecular dynamics simulations	4
Band structure calculations	9
Photocatalytic water splitting: values of the effective mass	10
Calculations of carrier mobilities	11
References	12

Phonon spectra calculations

Figure S1. Phonon spectra of the H-III heterostructure.

Ab initio molecular dynamics simulations

Figure S2. Variation of the total energy of (a) BAs, (b) WSeTe, and (c) BAs-WSeTe and (d) BAs-WSeE during ab initio molecular dynamics simulations at 300 K and 500 K.

Figure S2A. At 300 K and 500K, the temperature of (a) BAs, (b) WSeTe, and (c) BAs-WSeTe and (d) BAs-WTeSe during the 6 ps ab initio molecular dynamics simulations.

Figure S3. Representative structures of BAs during ab initio molecular dynamics simulations at (a) T = 300K and (b) T = 500K.

Figure S4. Representative structures of WSeTe during ab initio molecular dynamics simulations at (a) T = 300K and (b) T = 500K.

Figure S5. Representative structures of the BAs-WSeTe heterostructure during ab initio molecular dynamics simulations at (a) T = 300K and (b) T = 500K.

Figure S6. Representative structures of the BAs-WTeSe heterostructure during ab initio molecular dynamics simulations at (a) T = 300K and (b) T = 500K.

Band structure calculations

Figure S7. Band structure of the H-III heterostructure.

Photocatalytic water splitting: values of the effective mass

Table S1.	Calculated	effective	mass (m*) for	electrons	and	holes	in t	he	Armchai	r x	and	zigza	ag y
directions	(T = 300 K)).												

	Direction		$m^*(m_{\rm o})$	$D = m^*_{\rm h}/m^*_{\rm e}$
BAs	X	Electron	0.173	0.994
		hole	-0.172	
	У	Electron	0.256	0.922
		hole	-0.236	
WSeTe	X	Electron	0.390	1.371
		hole	-0.535	
	У	Electron	0.433	1.559
		hole	-0.675	
H-I	Х	Electron	0.184	2.021
		hole	-0.372	
	У	Electron	0.255	1.756
		hole	-0.448	
H-II	Х	Electron	0.192	1.875
		hole	-0.360	
	У	Electron	0.277	1.798
		hole	-0.498	
H-III	Х	Electron	0.271	0.78
		hole	0.213	
	У	Electron	0.265	2.19
		hole	0.582	
H-IV	Х	Electron	0.271	9.11
		hole	2.480	
	У	Electron	0.213	7.55
		hole	1.610	

Calculations of carrier mobilities

Figure S8. The energy shift of BAs monolayer, WXYsheet, and BAs-Janus WXY(X=Se, Te) obtained from DFT-PBE calculations. Graphs generated using VASPKIT [1].

Figure S9. The band edge positions of BAs monolayer, WXY sheet, and BAs-Janus WXY (X=Se, Te) heterostructure as a function of the uniaxial strain obtained from DFT-PBE functional.

Figure S10. Atomisti model of the heterostructure in contact with water: (a) BAs-WTeSe; (b) BAs-WTeSe with Te vacancy.

Figure S11. ab initio molecular dynamics simulations for (a) BAs-WTeSe (b) BAs-WTeSe (Vac) at T = 300K

Figure S12 : The band structures with large bubbles for the most stable and small solid circles for the second most stable configuration of WTeSe.

References

[1] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A User-Friendly Interface
Facilitating High-Throughput Computing and Analysis Using VASP Code, Computer Physics
Communications 267, 108033 (2021). <u>https://doi.org/10.1016/j.cpc.2021.108033</u>