Supporting Information

Exploring Pristine and Transition Metal doped SiP₂ monolayer as a promising anode material for (Li, Na, Mg) Ion Batteries

Shubham Sahoo¹, Puja Kumari¹, and Soumya Jyoti Ray¹

¹Department of Physics, Indian Institute of Technology Patna, Bihar, India- 801103

E-mail: ray@iitp.ac.in

Fig S1: (a),(b) Band structure of single Li and Full Li adsorbed SiP_2 ; (c),(d) and (e),(f) band structure of Na and Mg atom with single and full adsorbed SiP_2 monolayers respectively,(g) doped SiP_2 monolayer

Fig S2: (a),(b),(c) and (d),(e),(f) are band structures of single Li, Na and Mg adsorbed on Cr and Mn-doped SiP₂ monolayers respectively

Fig S3: (a),(b),(c) and (d),(e),(f) are band structures of single Li, Na and Mg adsorbed on Ni and Co-doped SiP_2 monolayers respectively

Fig S4: (a),(b),(c) represents 8 Li, Na and Mg atom adsorbed on SiP_2 monolayers respectively

Table S1: Formation energy for P and Si substituted by Transition metal on SiP₂ monolayer

Transition metal	E _{form} (eV) on P-substitution	E _{form} (eV) on Si –		
		substitution		
Cr	-2.59	-2.11		
Mn	-2.21	-2.02		
Ni	-1.91	-1.44		
Со	-2.69	-2.09		

Fig S5: (a), (b) and (c) Isosurface plot for single Li, Na, and Mg adsorbed on pristine SiP_2 monolayer, (d),(e), (f) and(g), (h), (i) Isosurface plot for single Li, Na and Mg adsorbed on Co and Cr doped SiP_2 monolayer respectively.

Fig S6: (a), (b),),(c) and (d),(e), (f) Isosurface plot for single Li, Na, and Mg adsorbed on Mn and Ni-doped SiP₂ monolayer respectively.

Brader Charge Analysis:

Table S2: Charge transfer ΔQ in the electronic unit (e) to the pristine and TM-doped SiP₂ monolayer

Metal atom	ΔQ(e) Pristine SiP ₂	ΔQ(e) Co- doped SiP ₂	ΔQ(e) Cr- doped SiP ₂	ΔQ(e) Mn- doped SiP ₂	ΔQ(e) Ni- doped SiP ₂
Li	0.68	0.39	0.31	0.36	0.31
Na	0.60	0.22	0.34	0.26	0.33
Mg	0.78	0.43	0.41	0.38	0.36

Fig S7: (a) Energy vs Time variation for of lithium adsorbed SiP_2 with the final structure at 300K, (b) and (c) Energy vs Time variation for full sodium and magnesium adsorbed SiP_2 with the final structure at 300K respectively.

 Table S3: effective mass and carrier mobility

Carrier type	Effective mass (m*)	Mobility(µ) cm ² V ⁻¹ s ⁻¹
Electron (a)	1.56	9554.2
Hole(a)	1.99	257.5
Electron (b)	0.76	201.2
Hole(b)	1.13	2344.3