Facile Synthesis and Self-Assembly of Pharmaceutically Important Oligobenzylidine-D-Sorbitol Dialdehydes: Direct Encapsulation and Stimuli Responsive Delivery of H₂S.

Vara Prasad Rebaka,¹ Yogendra Kumar,¹ Tohira Banoo,¹ Arun Kumar Rachamalla,¹ Subbiah Nagarajan^{*1}

1 Assembled Organic & Hybrid Materials Research Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda -506004, Telangana State, India. * Correspondence: snagarajan@nitw.ac.in

Table of contents

Table S1. A review of H_2S drug delivery systems and its donors

Table S2: Gelation studies with different solvents and oils

Figure S1: ¹H NMR of compound 3 in DMSO-d₆.

Figure S2: ¹³C NMR of compound 3 in DMSO-d₆.

Figure S3: HRMS Spectra of Compound 3.

Figure S4: ¹H NMR of compound 4 in DMSO-d₆.

Figure S5: ¹³C NMR of compound 4 in DMSO-d₆.

Figure S6: HRMS Spectra of Compound 4.

Figure S7: ¹H NMR of compound 5 in DMSO-d₆.

Figure S8: ¹H NMR of compound 6 in DMSO-d₆.

Table S3: Number of units in OBSDA oligomer.

Figure S9. Variable temperature ¹H-NMR spectra of gel formed by HBSD in DMSO-d₆

S.	Delivery system	H ₂ S Donor	Advantages	Limitations
No.				
1	Caged thiocarbamates ¹	Thiocarbamates	Organelle targeted delivery, Resolving organelle stress	Multiple steps for H ₂ S delivery from donor
2	N-Thiocarboxyanhydrides (NTAs) and poly-NTAs ²	Carbonyl Sulfide	Controlled release, Endothelial cell Proliferation	Multiple steps for H ₂ S delivery from donor
3	Mesoporous silica nanoparticles ³	Diallyl trisulfide	Controlled release, Enhanced endothelial cell proliferation and migration, Alleviates inflammation	Toxic effects of silica nanoparticles, Multiple steps for H ₂ S delivery from donor
4	Hypromellose hydrogels ⁴	5-(4-Hydroxyphenyl)-3H-1,2- dithiole-3-thione (ADT-OH)	Transdermal delivery, Enhanced mitochondrial function in HUVEC cells	Multiple steps for H ₂ S delivery from donor
5	Epoxide functional Polymeric nanoparticles ⁵	Perthiols	Thiol triggered delivery	Multiple steps for H ₂ S delivery from donor
6	Microfluidics assisted large porous microspheres ⁶	2-Acetyloxy benzoic acid 4- (3-thioxo-3H-1,2-dithiol-5- yl)phenyl ester (ASC-14)	Inhalable donor deposits on lungs, Treats pulmonary artery endothelial cells	Multiple steps for H ₂ S delivery from donor
7	Peptide Hydrogel ⁷	S-aroylthiooxime	Thiol triggered controlled release, <i>In vitro</i> HUVEC proliferation and transmigration, Treat intimal hyperplasia (IH)	Multiple steps for H ₂ S delivery from donor
8.	Mesoporous iron oxide nanoparticles ⁸	Diallyl trisulfide	Controlled release, Heart and brain targeting, Myocardial and cerebral protection from ischemic injury	Toxic effects of metal oxide nanoparticles, Multiple steps for H ₂ S delivery from donor
9	Gel derived from Oligobenzylidine-D- Sorbitol Dialdehyde in NMP solvent (Present Studies)	Direct encapsulation	 Derived from chemicals classified as GRAS by the FDA Facile synthetic strategy Direct encapsulation of H₂S, without the use of any precursor Stimuli responsive H₂S delivery 	-

Table S1. A review of H ₂ S drug deliver	ry systems and its donors
---	---------------------------

Table S2: Gelation studies with different solvents and oils

S.No	Solvent	Critical Gelation Concentration Observed(CGC wt/Vol%)			
		TBSD	HBSD	OBSD	DBSD
1	Water	Р	Р	Р	Р
2	Methanol	Р	Р	Р	Р
3	Glycerol	Р	Р	Р	Р
4	Ethylene glycol	Р	Р	Р	Р
5	Tetrahydrofuran	Р	Р	Р	Р
6	Dimethyl sulfoxide	G(1.2)	G(0.8)	G(1)	G(1)
7	Dimethyl sulfoxide + water	G(1)	G(0.6)	G(1)	G(1)
8	Acetone	Р	Р	Р	Р
9	1,4-dioxane	Р	Р	Р	Р

10	Dimethyl formamide	G(1)	G(1)	G(1)	G(1)
11	Poly(ethylene glycol)	Р	Р	Р	Р
12	Acetic acid	Р	Р	Р	Р
13	N-methyl pyrrolidone	G(1.5)	G(1.0)	G(1.5)	G(1.5)
14	1,2-Dichlorobenzene	Р	Р	Р	Р
15	pyridine	Р	Р	Р	Р
16	Ethanol	Р	Р	Р	Р
17	n-Butanol	Р	Р	Р	Р
18	Toluene	Р	Р	Р	Р
19	Diesel	Р	Р	Р	Р
20	Hazel nut oil	Р	Р	Р	Р
21	Olive oil	Р	Р	Р	Р
22	Linseed oil	Р	Р	Р	Р
24	Dimethyl carbonate	Р	Р	Р	Р
25	Cyrene	Р	Р	Р	Р

P – Precipitation; G – Gelation; S - solution

Figure S2: ¹³C NMR of compound 3 in DMSO-d₆.

Figure S4: ¹H NMR of compound 4 in DMSO-d₆.

130 120 110 100 90 f1 (ppm) 150 140

Figure S6: HRMS Spectra of Compound 4.

Figure S8: ¹H NMR of compound 6 in DMSO-d₆.

Calculation of the number of units in OBSDA oligomer

The number of units present in the OBSDA oligomer is obtained from integration of number of aromatic protons, acetal protons and protons attached to the sorbitol backbone. In a single unit of OBSDA, there are 8 aromatic protons, 2 acetal protons and 10 sorbitol protons. When one more unit is attached, the aromatic protons are increased by 4 protons, acetal protons are increased by 2 protons and the sorbitol protons are increased by 10 protons relatively.

Table S3: Number of units in OBSDA oligomer

Aromatic protons	Acetal protons	Sorbitol protons	No of units(n)
12H	4H	20H	2 (Fig S1)
16H	6H	30H	3 (Fig S4)
20H	8H	40H	4 (Fig S7)
24H	10H	50H	5 (Fig S8)

Figure S9. Variable temperature ¹H-NMR spectra of gel formed by HBSD in DMSO-d₆

1. K. Gilbert and M. D. Pluth, J. Am. Chem. Soc., 2022, 144, 17651–17660.

- 2. C. R. Powell, J. C. Foster, B. Okyere, M. H. Theus and J. B. Matson, J. Am. Chem. Soc., 2016, 138, 13477–13480.
- 3. W. Wang, X. Sun, H. Zhang, C. Yang, Y. Liu, W. Yang, C. Guo and C. Wang, Int. J. Nanomedicine, 2016, 11, 3255-

3263.

- 4. M. K. Marwah, H. Shokr, L. Sanchez-Aranguren, R. K. S. Badhan, K. Wang and S. Ahmad, *Pharm. Res.*, 2022, **39**, 341–352.
- 5. S. H. Yu, L. Esser, S. Y. Khor, D. Senyschyn, N. A. Veldhuis, M. R. Whittaker, F. Ercole, T. P. Davis and J. F. Quinn, *J. Polym. Sci. Part A Polym. Chem.*, 2019, **57**, 1982–1993.
- 6. H. Zhang, L. Z. Hao, J. A. Pan, Q. Gao, J. F. Zhang, R. K. Kankala, S. Bin Wang, A. Z. Chen and H. L. Zhang, *J. Control. Release*, 2021, **329**, 286–298.
- 7. A. Longchamp, K. Kaur, D. Macabrey, C. Dubuis, J. M. Corpataux, S. Déglise, J. B. Matson and F. Allagnat, *Acta Biomater.*, 2019, **97**, 374–384.
- 8. X. Sun, Y. Wang, S. Wen, K. Huang, J. Huang, X. Chu, F. Wang and L. Pang, J. Nanobiotechnology, 2021, 19, 1–16.