Development of rapid hypoxia-detectable artificial oxygen carriers with core-shell structure and erythrocyte mimetic shape

Zhang Qiming, Natsuko F Inagaki, Yusuke Hirabayashi, Masamichi Kamihira, and Taichi Ito

Name	Value	Unit	Source
Radius of core, R_1	2	μm	Specified
			~
Shell thickness, R_2	2	μm	Specified
		21	1
O_2 Diffusivity in the PFOB core, D_1	5.6×10^{-5}	cm ² /s	1
		-	
O ₂ Diffusivity in the PDMS shell, D_2	3.4×10^{-5}	cm ² /s	2
O ₂ Diffusivity in culture medium, D_3	2.4×10^{-5}	cm ² /s	3
O ₂ Solubility in PFOB (1 atm), S_1	21135	μМ	1
O ₂ Solubility in PDMS (1 atm), S_2	8035	μМ	4
O ₂ Solubility in culture medium (1	1056	μМ	5
atm), S ₃			
Temperature, T	37	°C	Specified
Pressure, P	1	atm	Specified

Table. S1 Parameters used in the simulation of oxygen transfer within cDFC

Fig. S1 Phosphorescence response intensity map of Ru(dpp)@ PFOB/PDMS–TPE; Blue:

normoxia (20% O₂), Green: hypoxia (0% O₂)

Fig. S2. Confocal and SEM images of bifunctional cDFCs after treatments such as low pH (pH=4.4) inculation, low temperature (-20°C) incubation, autoclave, and EOG sterilization;

Scale bar = $10 \ \mu m$

Fig. S3 Merged channels confocal images of bifunctional cDFCs dispersed with Hr-HeLa cells under normoxia condition; (A) PtOEP@PFOB/PDMS-TPE; (B):

PtTFPP@PFOB/PDMS–TPE; Green channel: ex = 488 nm;

Fig. S4 Simulation of oxygen release from the PFOB/PDMS–TPE spherical microparticle (A) Built-up of spherical core-shell particle model, R_1 represents for the radius of PFOB core, R_2 represents for the shell thickness; D_1 , D_2 , and D_3 represent the oxygen diffusivity in PFOB, PDMS–TPE, and culture medium, respectively;

(B) Simulated results of 2D oxygen diffusion profile from 0 ms to 5 ms

Fig. S5. Construction of cDFC 3D model by importing 2D confocal image stacks into COMSOL by using Imaris. (A) Selected confocal images of a cDFC at different z positions; (B) Reconstructed 3D confocal image of cDFC by Imaris. Left: Front view.
Middle: Cross-section of front Right: Top view; (C) Import of cDFC cross-section into COMSOL and output the 3D gemomerty Overview of 3D mesh cDFC geometry in
COMSOL. Left: 2D imported contour from Imaris image. Right: overview and transparent view of cDFC 3D mesh after revolution;

Fig. S6. Movie (GIF) of the hypoxia response of suspension containing 1 vol% of PtOEP@PDMS–TPE in water after the addition of Na₂SO₃. Phosphorescence rapidly appeared with UV irradiation at 365 nm after the addition of Na₂SO₃.

Fig. S7. Oxygen releasing curves of water (black) and 10 vol% bifunctional cDFC suspension (blue). The suspension was first perfused with pure oxygen at 100 mL/min until the saturated. Then nitrogen gas was perfused into the suspension at the same speed. The dissolved oxygen (DO) concentration decrease was monitored by a DO meter at real time.

Reference

- J. Jägers, A. Wrobeln and K. B. Ferenz, *Pflugers Arch*, 2021, **473**, 139–150.
- 2 D. A. Markov, E. M. Lillie, S. P. Garbett and L. J. McCawley, *Biomed Microdevices*, 2014, **16**, 91–96.

- A. Al-Ani, D. Toms, D. Kondro, J. Thundathil, Y. Yu and M. Ungrin, *PLoS One*, 2018, **13**, e0204269.
- 4 L. Xu, H. Lee, D. Jetta and K. W. Oh, *Lab Chip*, 2015, **15**, 3962–3979.
- 5 D. Newby, L. Marks and F. Lyall, *Placenta*, 2005, **26**, 353–357.