Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for

Inhibition of Mitochondrial Metabolism by (–)-Jerantinine A: Synthesis and Biological Studies in Triple-Negative Breast Cancer Cells

Timothy L. Gialelis^{a†}, Zifei Wang^{b†}, Joshua A. Homer^{b†}, Wen-Hsuan Yang^{b†}, Taemoon Chung^{b†}, Qingting Hu^{b,c}, Christopher J. Smedley^a, Nitin J. Pawar^b, Nitinkumar S. Upadhyay^b, David A. Tuveson^b, Scott K. Lyons^b, Michael J. Lukey^{b*} and John E. Moses^{b*}

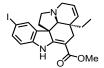
^a La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.

^b Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

^c Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA.

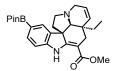
Email: moses@cshl.edu, lukey@cshl.edu.

Table of Contents

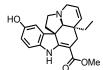

Syntheses of (–)-Jerantinine A, (–)-Melodinine P, and Derivatives	2
Biological Evaluations of (–)-Jerantinine A, (–)-Melodinine P, and Derivatives	6
NMR spectra of synthesized compounds	.14
References	.24

Syntheses of (–)-Jerantinine A, (–)-Melodinine P, and Derivatives

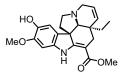
Materials and methods


All commercially obtained reagents were used as received unless otherwise noted. A generous gift of 1Kg of (-)-tabersonine was donated by Dr Dong, Shanghai Institute of Organic Chemistry, China. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 pre-coated plates (0.25 mm). Visualization of the chromatogram was accomplished by UV, staining as necessary. All samples were purified using Biotage Selekt flash column chromatography. ¹⁹F (Bruker-377 MHz), ¹H (Bruker-400 MHz), and ¹³C NMR (Bruker-101 MHz) spectra were recorded using CDCl₃ as solvents. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in Hz, and integration. When necessary, proton and carbon assignments were made by means of ¹H-¹H COSY, ¹H-¹³C and HSQC. Mass spectra were obtained using a Q Exactive HF (Ionization source: HESI II) mass spectrometer at the Cold Spring Harbor Laboratory. IR were obtained using Perkin Elmer FT-IR spectrometer at the Cold Spring Harbor Laboratory.

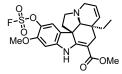
(-)-15-lodo-tabersonine (4)¹


To a stirred solution of tabersonine (**TAB**, **3**) (2.93 g, 8.71 mmol) in TFA (90 mL) was added NIS (1.96 g, 8.71 mmol) in 4 portions over 30 min. The reaction was allowed to stir for 16 h. TFA was then evaporated and the residue was diluted with NaOH (1M *aq*, 100 mL) at 0 °C and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic fractions were then dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The crude material was dissolved in pentane (250 mL), filtered and concentrated *in vacuo* to give (–)-15-iodo-tabersonine (**4**) as a white solid (3.79 g, 94%). **m.p.**: 85 °C; $[\alpha]_D - 119$ (c 0.10, CHCl₃); **R**_f = 0.4 in 4:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 3359, 3022, 2959, 1671, 1131; ¹**H NMR** (400 MHz, CDCl₃) δ 8.92 (s, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 7.39 – 7.31 (m, 1H), 6.53 (d, *J* = 8.1 Hz, 1H), 5.71 (ddd, *J* = 10.0, 4.7, 1.5 Hz, 1H), 5.63 (dt, *J* = 9.9, 1.9 Hz, 1H), 3.69 (s, 3H), 3.38 (ddd, *J* = 16.0, 4.7, 1.5 Hz, 1H), 3.13 (dt, *J* = 16.0, 2.0 Hz, 1H), 3.02 – 2.93 (m, 1H), 2.62 (ddd, *J* = 10.7, 8.5, 4.8 Hz, 1H), 2.55 (s, 1H), 2.48 (dd, *J* = 15.2, 1.9 Hz, 1H), 2.33 (d, *J* = 15.1 Hz, 1H), 1.98 (td, *J* = 11.3, 6.5 Hz, 1H), 1.79 – 1.70 (m, 1H), 0.96 – 0.86 (m, 1H), 0.82 – 0.78 (m, 1H), 0.57 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 165.5, 143.0, 140.7, 136.4, 132.8, 130.4, 124.9, 111.4, 92.9, 82.5, 70.1, 55.1, 51.1, 51.0, 50.4, 44.5, 41.2, 28.5, 27.1, 7.5; HRMS (ESI⁺): calculated for $C_{21}H_{24}IN_2O_2$ [M+H]⁺: m/z = 463.0882, m/z found 463.0878.

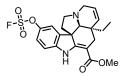
(-)-15-BPin-tabersonine (5)²


To a solution of (-)-15-iodo-tabersonine (**4**) (1.00 g, 2.16 mmol), B_2Pin_2 (1.40 g, 5.51 mmol) and KOAc (2.15 g, 21.60 mmol) in degassed DMF (20 mL) was added PdCl₂(dppf)CH₂Cl₂ (0.32 g, 0.39 mmol) under a positive flow of N₂. The resulting mixture was heated at 80 °C for 16 h (before returning to room temperature). The reaction mixture was then diluted with water (200 mL) and extracted with EtOAc (4 × 100 mL). The combined organic fractions were washed with H₂O (3 × 100 mL), brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash column chromatography (0-20% EtOAc in hexanes) to afford (-)-15-BPin-tabersonine (**5**) as a white solid (0.82 g, 82%). **m.p.**: 100-102 °C; [**a**]_D –240 (*c* 0.010, CHCl₃); **R**_f = 0.4 in 2:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 2918, 1673; ¹**H NMR** (400 MHz, CDCl₃) δ 9.01 (s, 1H), 7.62 – 7.52 (m, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 5.71 (ddd, *J* = 9.9, 4.6, 1.5 Hz, 1H), 5.64 (dt, *J* = 9.9, 1.9 Hz, 1H), 3.70 (s, 3H), 3.39 (ddd, *J* = 15.8, 4.6, 1.5 Hz, 1H), 3.19 (dt, *J* = 15.9, 2.0 Hz, 1H), 2.95 (dd, *J* = 8.4, 6.2 Hz, 1H), 2.78 – 2.69 (m, 1H), 2.68 (s, 1H), 2.48 (dd, *J* = 15.1, 1.8 Hz, 1H), 2.37 (d, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 169.0, 166.5, 146.0, 137.4, 135.6, 133.0, 127.3, 125.0, 108.8, 92.9, 83.6, 69.7, 54.9, 51.1, 50.9, 50.6, 44.7, 41.5, 28.2, 26.8, 24.9, 24.9, 7.5; **HRMS (ESI*)**: calculated for C₂₇H₃₆BN₂O₄ [M+H]*: m/z = 463.2768, m/z found 463.2760.

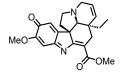
(–)-Melodinine P (6)²


To a solution of (–)-15-BPin-tabersonine (**5**) (0.50 g, 1.08 mmol) and H_2O_2 (35% *aq*, 1.25 mL) in THF (10 mL) was added NaOH (1M *aq*, 3.00 mL) dropwise at 0 °C. The reaction was allowed to stir at 0 °C for a further 1 h. The reaction mixture was then neutralized to pH 7 using HCl (1M *aq*), washed with Na₂S₂O₃ (sat. *aq*) and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (0-50% EtOAc in hexanes) to afford (–)-melodinine P (**6**) as a white solid (0.28 g, 74%). [α]_D –52.5 (*c* 0.008, CHCl₃); **R**_f = 0.6 in 1:2 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 2926, 1681; ¹**H** NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 6.76 (d, *J* = 2.2 Hz, 1H), 6.62 – 6.52 (m, 2H), 5.71 (ddd, *J* = 9.9, 4.7, 1.5 Hz, 1H), 5.64 (dt, *J* = 9.8, 1.8 Hz, 1H), 3.69 (s, 3H), 3.37 (ddd, *J* = 15.9, 4.7, 1.4 Hz, 1H), 3.09 (dt, *J* = 15.9, 1.9 Hz, 1H), 3.01 – 2.92 (m, 1H), 2.66 – 2.54 (m, 2H), 2.48 (dd, *J* = 15.1, 1.8 Hz, 1H), 2.34 (d, *J* = 15.0 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.74 (ddd, *J* = 11.7, 4.8, 1.3 Hz, 1H), 0.92 (dt, *J* = 14.9, 7.5 Hz, 1H), 0.79 (dq, *J* = 14.3, 7.3 Hz, 1H), 0.57 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 167.4, 150.4, 139.7, 136.8, 133.1, 124.8, 113.8, 110.1, 109.6, 91.3, 70.2, 55.5, 51.0, 51.0, 50.5, 44.4, 41.2, 28.6, 27.1, 7.5; HRMS (ESI⁺): calculated for C₂₁H₂₅N₂O₃ [M+H]⁺: m/z = 353.1865, m/z found 353.1863.

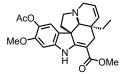
(-)-Jerantinine A (1)²


To a solution of (–)-melodinine P (**6**) (0.10 g, 0.26 mmol) in MeOH (2 mL) was added freshly prepared Ag₂O (0.61 g, 2.61 mmol) in one portion. The reaction was allowed to stir for 8 h in dark. The reaction mixture was filtered through Celite[®], then concentrated *in vacuo*. The residue was taken up in CH₂Cl₂ (20 mL) was stirred with Na₂S₂O₄ (10% *aq*, 20 mL) for a further 15 min. The reaction mixture was further extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (0-50% EtOAc in hexanes) to afford (–)-jerantinine A (**1**) as an off-white solid (96 mg, 90%). [α]_D –70.9 (*c* 0.010, CHCl₃); **R**_f = 0.5 in 1:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 3548, 3379, 3035, 2965, 1669, 1605, 1110; ¹**H NMR** (400 MHz, CDCl₃) δ 8.79 (s, 1H), 6.81 (s, 1H), 6.38 (s, 1H), 5.71 (ddd, *J* = 9.9, 4.7, 1.5 Hz, 1H), 5.68 – 5.59 (m, 1H), 5.24 (s, 1H), 3.80 (s, 3H), 3.69 (s, 3H), 3.38 (ddd, *J* = 15.8, 4.7, 1.5 Hz, 1H), 3.08 (dt, *J* = 15.9, 1.9 Hz, 1H), 2.09 – 2.91 (m, 1H), 2.60 (ddd, *J* = 11.1, 8.4, 4.7 Hz, 1H), 2.52 (d, *J* = 1.8 Hz, 1H), 2.46 (dd, *J* = 15.0, 1.9 Hz, 1H), 2.34 (d, *J* = 15.0 Hz, 1H), 2.03 – 1.98 (m, 1H), 1.69 (ddd, *J* = 11.5, 4.8, 1.1 Hz, 1H), 0.99 – 0.84 (m, 1H), 0.79 (dt, *J* = 14.0, 7.2 Hz, 1H), 0.56 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 167.9, 145.9, 139.9, 136.1, 133.1, 130.1, 124.9, 108.8, 94.6, 91.8, 70.2, 56.3, 55.3, 51.0, 50.9, 50.7, 44.4, 41.5, 28.3, 26.9, 7.5; HRMS (ESI⁺): calculated for C₂₂H₂₇N₂O₄ [M+H]⁺: m/z = 383.1971, m/z found 383.1968.

(–)-Jerantinine A fluorosulfate (7)


To a solution of (-)-jerantinine A (1) (22 mg, 0.057 mmol) in MeCN (5 mL) was added HMDS (17 μ L, 0.086 mmol), and BTMG (2 μ L, 0.011 mmol). To the above reaction mixture, SO₂F₂ gas was bubbled in for 5 min, and the resultant reaction mixture was allowed to stir at room temperature for 3 h. The reaction mixture was concentrated *in vacuo* to afford (-)-jerantinine A fluorosulfate (**7**) as a sticky solid (27 mg, 100%). [α]_D –35.2 (*c* 0.007, CHCl₃); **R**_f = 0.7 in 1:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 3363, 2928, 1677; ¹**H NMR** (400 MHz, CDCl₃) δ 9.00 (s, 1H), 7.08 (s, 1H), 6.46 (s, 1H), 5.72 (ddd, *J* = 9.9, 4.8, 1.5 Hz, 1H), 5.62 (dt, *J* = 10.0, 1.9 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.38 (ddd, *J* = 16.0, 4.8, 1.5 Hz, 1H), 3.13 (dt, *J* = 15.9, 2.0 Hz, 1H), 3.02 – 2.94 (m, 1H), 2.59 (ddd, *J* = 10.6, 8.6, 4.9 Hz, 1H), 2.55 – 2.41 (m, 2H), 2.33 (d, *J* = 15.2 Hz, 1H), 2.03 – 1.97 (m, 1H), 1.74 (ddd, *J* = 11.7, 5.0, 1.5 Hz, 1H), 0.91 (dt, *J* = 15.0, 7.6 Hz, 1H), 0.85 – 0.77 (m, 1H), 0.58 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 166.0, 151.6, 144.0, 132.8, 129.8, 128.5, 125.0, 116.0, 95.4, 94.2, 70.2, 56.6, 54.9, 51.4, 51.1, 50.4, 44.6, 41.1, 28.8, 27.3, 7.6; ¹⁹F NMR (377 MHz, CDCl₃) δ 38.78; HRMS (ESI⁺): calculated for C₂₂H₂₆FN₂O₆S [M+H]⁺: m/z = 465.1495, m/z found 465.1498.

(–)-Melodinine P fluorosulfate (8)


To a solution of (–)-melodinine P (**6**) (0.10 g, 0.28 mmol) in MeCN (25 mL) was added HMDS (65 μ L, 0.31 mmol), and BTMG (11 μ L, 0.06 mmol). To the above reaction mixture, SO₂F₂ gas was bubbled in for 30 min, and the resultant reaction mixture was allowed to stir at room temperature for 16 h. The reaction mixture was concentrated *in vacuo* and the residue taken up in EtOAc (30 mL), washed with H₂O (20 mL). The separated aqueous layer was further extracted EtOAc (3 × 10 mL). The combined organic layers were washed with H₂O (3 × 20 mL), brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (0-20% EtOAc in hexanes) to afford (–)-melodinine P fluorosulfate (**8**) as a colorless oil (0.12 g, 100%). [α]_D –44.8 (*c* 0.005, CHCl₃); **R**_f = 0.8 in 4:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 3366, 2963, 1679, 1615, 1475, 1448, 1268, 1231, 1117; ¹**H NMR** (400 MHz, CDCl₃) δ 9.08 (s, 1H), 7.20 (d, *J* = 3.0 Hz, 1H), 7.12 (dd, *J* = 8.5, 3.0 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 5.80 (ddd, *J* = 10.0, 5.2, 1.8 Hz, 1H), 5.70 (dt, *J* = 10.0, 1.8 Hz, 1H), 3.77 (s, 3H), 3.46 (dd, *J* = 16.0, 5.2 Hz, 1H), 3.21 (d, *J* = 16.0 Hz, 1H), 3.07 (t, *J* = 7.5 Hz, 1H), 2.72 – 2.66 (m, 2H), 2.56 (dd, *J* = 15.2, 1.9 Hz, 1H), 2.41 (d, *J* = 15.3 Hz, 1H), 2.12 – 2.04 (m, 1H), 1.87 – 1.82 (m, 1H), 1.02 – 0.86 (m, 2H), 0.65 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 168.7, 165.4, 144.0, 143.2, 140.0, 132.6, 124.8, 120.3, 114.9, 109.5, 94.0, 70.0, 55.2, 51.2, 51.0, 50.2, 44.5, 40.8, 28.8, 27.2, 7.5; ¹⁹**F NMR** (377 MHz, CDCl₃) δ 35.97; **HRMS (ESI*)**: calculated for C₂₁H₂₄FN₂O₅S [M+H]*: m/z = 435.1384, m/z found 435.1379.

(-)-Jerantinine A iminoquinone (9)

To a solution of (–)-jerantinine A (1) (10 mg, 0.03 mmol) in CDCl₃ (2 mL) was added Ag₂O (60 mg, 0.26 mmol) at room temperature in one portion. The reaction was allowed to stir for 15 min in dark. The reaction mixture was filtered, and the filtrate concentrated *in vacuo* to afford (–)-jerantinine A iminoquinone (9) as a dark brown oil (10 mg, 100%). $[\alpha]_D$ –36.1 (*c* 0.010, CHCl₃); **R**_f = 0.05 in 1:1 hexanes-ethyl acetate (degrades); **IR** (neat, v, cm⁻¹): 2962, 2921, 1696, 1645, 1578, 1225, 1164; ¹H NMR (400 MHz, CDCl₃) δ 6.70 (s, 1H), 6.29 (s, 1H), 5.82 – 5.77 (m, 1H), 5.66 – 5.62 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.48 – 3.43 (m, 1H), 3.12 – 3.04 (m, 2H), 2.77 – 2.68 (m, 2H), 2.53 – 2.47 (m, 1H), 2.42 (s, 1H), 2.17 – 2.09 (m, 1H), 1.82 (dd, *J* = 11.9, 4.3 Hz, 1H), 0.98 – 0.85 (m, 2H), 0.73 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.1, 168.2, 167.4, 166.1, 158.1, 157.4, 132.1, 125.8, 120.5, 118.6, 104.3, 70.2, 56.5, 54.8, 52.5, 51.2, 50.8, 45.0, 43.0, 32.7, 27.3, 7.7; HRMS (ESI⁺): calculated for C₂₂H₂₅N₂O₄ [M+H]⁺: m/z = 383.1809, m/z found 381.1808.

(-)-Jerantinine A acetate (2)³

A solution of (–)-jerantinine A (1) (0.11 g, 0.29 mmol) in Ac₂O-pyridine (1:1 v/v, 3 mL) was stirred at room temperature for 15 min. The reaction mixture was then diluted with water (10 mL), the pH adjusted to 10 with Na₂CO₃ (sat. *aq*, *ca*. 20 mL) and then extracted with CH₂Cl₂ (4 × 20 mL). The combined organic fractions were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash column chromatography (0-50% EtOAc in hexanes) to afford (–)-jerantinine A acetate (**2**) as an off-white solid (90 mg, 74%). [*a*]_D –46.1 (*c* 0.004, CHCl₃); **R**_f = 0.5 in 1:1 hexanes-ethyl acetate; **IR** (neat, v, cm⁻¹): 3364, 2962, 1762, 1675, 1614, 1494, 1456, 1368, 1262, 1156, 1109; ¹**H NMR** (400 MHz, CDCl₃) & 8.97 (s, 1H), 6.92 (s, 1H), 6.50 (s, 1H), 5.79 – 5.75 (m, 1H), 5.69 (d, *J* = 10.1 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 3.44 – 3.40 (m, 1H), 3.16 (d, *J* = 15.9 Hz, 1H), 3.02 (t, *J* = 6.8 Hz, 1H), 2.66 – 2.61 (m, 2H), 2.54 (d, *J* = 15.0 Hz, 1H), 2.38 (d, *J* = 15.0 Hz, 1H), 2.30 (s, 3H), 2.06 – 2.01 (m, 1H), 1.84 (dd, *J* = 12.0, 3.5 Hz, 1H), 1.03 – 0.82 (m, 2H), 0.64 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) & 169.6, 169.1, 167.1, 151.2, 141.8, 133.5, 133.1, 129.6, 124.9, 116.5, 95.2, 92.9, 70.3, 56.3, 55.2, 51.2, 50.5, 44.4, 41.2, 28.8, 27.3, 20.8, 7.6; **HRMS (ESI+**): calculated for C₂₄H₂₉N₂O₅ [M+H]⁺: m/z = 425.2071, m/z found 425.2068.

Biological Evaluations of (-)-Jerantinine A, (-)-Melodinine P, and Derivatives

Cell culture

MDA-MB-231 breast cancer cells and MCF-10A human mammary epithelial cells were purchased from ATCC and cultured in a humidified incubator with 5% CO₂ at 37°C. MDA-MB-231 cells were cultured in RPMI-1640 plus 10% FBS. MCF-10A cells were cultured in DMEM/F12 medium supplemented with 5% horse serum, 20ng/ml epidermal growth factor, 0.5mg/ml hydrocortisone, 100 ng/ml cholera toxin, and 10 μ g/ml insulin.

Cell proliferation assay

MDA-MB-231 breast cancer cells were seeded in 96-well black plates at a density of 2000 cells per well and then incubated with the indicated drug concentrations. The medium was changed every two to three days. On day 5, the viability was assessed using the CyQUANT proliferation assay (Thermo C35013), a fluorescence-based measurement of cellular DNA content, according to manufacture instruction.

Construction of oxidative stress reporter

Lentivirus-based oxidative stress reporter was described previously⁴. Briefly, the Nrf2 degron was conjugated to the N-terminus of green luciferase (CBG99) to indicate oxidative stress and constitutively-expressed red luciferase (PRE9) was used as an imaging internal control. Red fluorescence from mStrawberry expression was used for the positive selection of reporter gene-transduced cells. All of the gene cassettes were built into a single lentiviral vector (pBOB lentiviral backbone). Reporter genes (CBG99, PRE9 and mStrawberry) and NRF2 protein degron sequences were all synthesized from GenScript USA (New Jersey).

The generation of oxidative stress reporter expressing cells

The three lentiviral packaging plasmids (pMDL, pRSV-REV, pCMV-VSVG) and the lentiviral oxidative stress reporter plasmid (OxiLuc) were transfected into HEK293T packaging cells with Lipofectamine 3000 (Invitrogen, Waltham, MA; according to the manufacturer's recommended protocol) to produce OxiLuc lentivirus⁵. Lentiviral supernatant was then collected 48 hours and 72 hours later, aliquoted and stored at -80°C. MDA-MB-231 cells were seeded on a 6 well plate at a density of $3x10^5$ cells/well and transduced with 500 µL of OxiLuc lentiviral supernatant plus polybrene to a final concentration of 8 µg/mL. After expanding the transduced cells, FACS sorting was performed for red fluorescence and mStrawberry expression (BD-FACS Aria, BD Bioscience, Franklin Lakes, NJ) to select for MDA-MB-231 cells stably transduced with OxiLuc expression.

Oxidative stress imaging and drug treatment in vitro

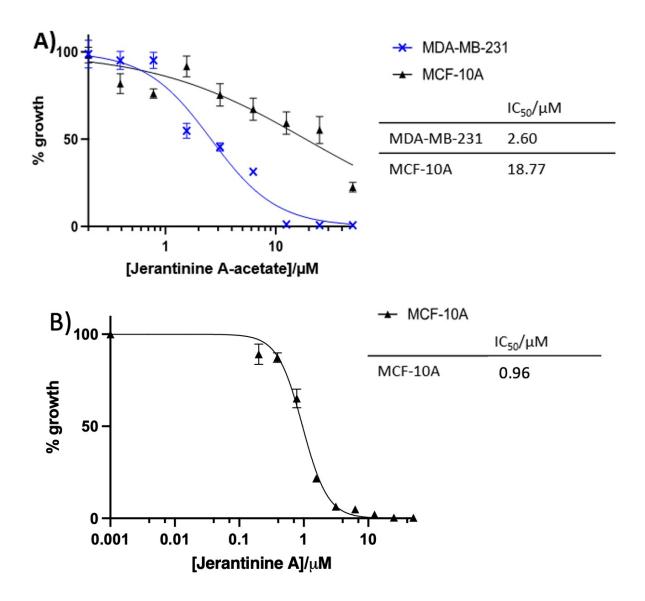
Images of oxidative stress were taken with an IVIS Spectrum scanner (Perkin Elmer) as previously described⁴. 5x10³ MDA-MB231/OxiLuc cells were plated day -1 on a black-walled 96 well plate (Cellvis, Mountain View, CA). The next day, the cells were treated with escalating doses of MP, JA, and the fluorosulfate of both molecules for 24 hours. 24 hours after drug treatment, multiple bioluminescent images were acquired 2 minutes after adding 150 µg/mL of D-Luciferin (Goldbio, Saint Louis, MO), through a series of 20 nm bandpass optical filters, ranging from 520 to 660 nm. Using single-color CBG99 and PRE9 reference spectra, green and red emitted light was spectrally-unmixed using the Imaging Wizard in Living Imaging software 4.0 (Perkin Elmer). All *in vitro* images were acquired at field-of-view C and focused at 0.5 cm subject height. Photon flux from each well was quantified as photons/second/steradian/cm².

Metabolomics

MDA-MB-231 breast cancer cells were treated for 16 hours with vehicle (DMSO), 5 μ M jerantinine A, or 5 μ M jerantinine A fluorosulfate to perform untargeted metabolic profiling. A water solution containing 50% (*v*/*v*) methanol and 20% (*v*/*v*) acetonitrile was used to extract cell lysate. The supernatant was collected, transferred into glass vials, and stored at -80°C before being analyzed by mass spectrometry (MS). For the MS analysis, an Orbitrap Q Exactive HF (Thermo Fisher Scientific) with a HESI probe was used. Each polarity's mass was calibrated prior to analysis. Principal component analysis (PCA), clustered heatmap analysis, and metabolite set enrichment analysis were all performed using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca).

 Table S1. Previously reported anticancer activity of (-)-jerantinine A (1).

Cell line	Description	Activity	Reference	Notes
KB/S	Keratin-forming tumor cell line HeLa	IC ₅₀ = 0.76 μg/mL (1.99 μM)	J. Nat. Prod, 2008 , 71, 1591– 1594	
KB/VJ300	Vincristine- resistant KB cells	IC ₅₀ = 0.66 μg/mL (1.73 μM)	J. Nat. Prod, 2008 , 71, 1591– 1594	
A549	Adenocarcinomic human alveolar basal epithelial cells	GI ₅₀ = 3.741 ± 0.65 μM	Investig. New Drugs, 2014 , 32, 838–850	
HCT-116	Human colorectal carcinoma cell line	GI ₅₀ = 0.762± 0.13 μM	Investig. New Drugs, 2014 , 32, 838–850	
HT-29	Human colorectal adenocarcinoma cell line with epithelial morphology	GI ₅₀ = 2.520 ± 0.28 μM	Investig. New Drugs, 2014 , 32, 838–850	
MCF-7	Human breast cancer cell line with estrogen, progesterone and glucocorticoid receptors	GI ₅₀ = 0.853 ± 0.09 μM	Investig. New Drugs, 2014 , 32, 838–850	
MDA- MB-468	Human breast cancer cell line with upregulated EGF receptors	Gl ₅₀ = 0.8503 ± 0.07 μM	Investig. New Drugs, 2014 , <i>32</i> , 838–850	
MRC-5	Human fetal lung fibroblast cells	GI ₅₀ = 1.723 ± 0.67 μM	Investig. New Drugs, 2014 , 32, 838–850	
MCF-7	Human breast cancer with estrogen, progesterone, and glucocorticoid receptors	 IC ₅₀ = 1.22 ± 0.15 μM	<i>Scientific Reports</i> volume 7 , Article number: 42504 (2017)	Non-transformed cells were found to be significantly more resistant to JA treatment and apoptotic morphological changes were not noted in MCF- 10A cell line.
T47D	Human breast	IC ₅₀ = 0.72 ± 0.18 μM	Scientific Reports volume 7,	


			A .: L	
	cancer with significant		Article number: 42504 (2017)	Rapid induction of
	resistance to			apoptosis could imply
	estrogens and			endogenous proteins are
	antiestrogens			targeted.
MDA-	Triple negative	$IC_{50} = 0.86 \pm 0.09 \ \mu M$	Scientific Reports volume 7,	509 upregulated proteins,
MB-468	breast cancer		Article number: 42504 (2017)	429 down-regulated.
	(TNBC) cell line			
				JA triggers dysregulation
MCF-10A	Non-transformed	$IC_{50} = >10 \ \mu M$	Scientific Reports volume 7,	of SF3B1 and SF3B3
	human		Article number: 42504 (2017)	proteins, casing pre-
	mammary			mRNA splicing errors. This
	epithelial cells			induced apoptosis.
	bearing a Zinc- Finger Nuclease			
	(ZFN) knock out			
	modification			
U87MG	Human primary	IC_{50} = 0.62 ± 1.19 µg/mL (1.62 ± 3.11	Phytomedicine PHYMED	A significant decrease in
	glioblastoma	μM)	5217	the toxicity to normal
			(2017)	MRC5 cells was observed
		$IC_{50} = 1.29 \pm 1.26 \mu\text{g/mL g-T3 combined}$		when JA was
		with 0.16 μg/mL (0.42 μM) JA , CI = 0.67 ^[x]		coadministered with g-T3.
				JA treatment resulted in
MRC5	Normal fetal lung	$IC_{50} = 0.97 \pm 0.11 \mu g/mL (2.54 \pm 0.29)$		cell cycle arrest at the
	fibroblast cells	μM)		G2/M phase while
				coadministering JA and g-
		$IC_{50} = 6.55 \pm 1.13 \ \mu\text{g/mL g-T3} \text{ combined}$ with 0.16 $\mu\text{g/mL}$ (0.42 $\mu\text{M})$		T3 caused G0/G1 arrest.
				JA treatment caused
				disruption of microtubule
				networks and triggered
				FAas- and p53-induced
				apoptosis via death
				receptor and
				mitochondrial pathways.
HCT116	Human		Scientific Reports volume 8,	JA induced cell cycle
	colorectal		Article number: 10617 (2018)	arrest at the G2/M phase.
	carcinoma			
				JA prevents tubulin
MCF-7	Human breast cancer with	Gl ₅₀ = 0.81 ± 0.07 μM	<i>Scientific Reports</i> volume 8 , Article number: 10617 (2018)	polymerization <i>in vitro</i> .
	estrogen,			JA also caused the
	progesterone			formation of multipolar
	and			spindles, misaligned
	glucocorticoid			chromosomes,
	receptors			multicnucleation, and
NACE -	Illumine I in the		Colorad Color	nuclear fragmentation.
MCF-7	Human breast	96 h of exposure, decrease in cell	Scientific Reports volume 8,	
	cancer with	density	Article number: 10617 (2018)	

	estrogen, progesterone and glucocorticoid receptors	(3D culture)		Tubulin-jerantinine B acetate crystal structure obtained.
MDA- MB-231	Epithelial cell line isolated from the breast tissue of an adenocarcionma patient	96 h of exposure, decrease in cell density And a decrease in the invasive nature of this cell line (3D culture)	<i>Scientific Reports</i> volume 8 , Article number: 10617 (2018)	
A549	Human lung adenocarcinoma	$\begin{split} &\text{IC}_{20} = 0.35 \pm 0.32 \ \mu\text{g/mL} \ (0.92 \pm 0.84 \ \text{uM}) \\ &\text{IC}_{50} = 1.42 \pm 1.31 \ \mu\text{g/mL} \ (3.71 \pm 3.43 \ \text{uM}) \\ &\text{IC}_{50} = 2.77 \pm 1.09 \ \mu\text{g/mL} \ \text{d-T3 combined} \\ &\text{with} \ 0.35 \ \mu\text{g/mL} \ (0.92 \ \mu\text{M}) \ \textbf{JA}, \ \text{CI} = \\ &0.47^{[\times]} \\ &\text{Vinblastine} \ (\text{positive control}) \ \text{IC}_{50} = 0.03 \\ \pm \ 1.45 \ \mu\text{g/mL} \end{split}$	J. Herbmed. Pharmacol. 2019, 8, 333	JA caused cell shrinkage in A549 cells due to microtubule disruption. JA induced caspase 8, 9, and 3, enzymatic activities. Combined treatment with d-T3 boosted caspase 9 and 3 activities (1.90- and 1.95- fold respectively). JA induced similar levels
MRC5	Normal fetal lung fibroblast cells	$\begin{split} & \text{IC}_{20} = 0.35 \pm 0.32 \ \mu\text{g/mL} \ (0.92 \pm 0.84 \\ \mu\text{M}) \\ \\ & \text{IC}_{50} = 0.97 \pm 0.11 \ \mu\text{g/mL} \ (2.54 \pm 0.29 \\ \mu\text{M}) \\ \\ & \text{IC}_{50} = 5.57 \pm 1.22 \ \mu\text{g/mL} \ \text{d-T3 combined} \\ & \text{with} \ 0.35 \ \mu\text{g/mL} \ (0.92 \ \mu\text{M}) \ \textbf{JA} \end{split}$	J. Herbmed. Pharmacol. 2019, 8, 333	of toxicity to A549 and normal MRC5 when used alone. When combined with d-T3, 2-fold selective toxicity as observed.
PC3	Human prostate cancer	EC ₅₀ = 2.8 ± 0.7 μM (JA) EC ₅₀ = 20.9 ± 2.7 μM (MP) EC ₅₀ = 76.0 ± 10.1 μM (TAB)	Org. Biomol. Chem., 2022 , 20, 3988-3997	Antitumor activities enhanced with hydroxy/methoxy derivatizations on indole- ring.
SKBR-3 MDA- MB-231	TfR1+ breast cancers maximal inhibitory co	Gl ₅₀ = 0.02-0.15 μM (Apoferritin (AFt)- JA-Ac)	ACS Omega, 2022 , 7, 21473–21482	AFt acts as a biocompatible vehicle for targeted delivery of JA-Ac , offering potential to minimize toxicity and enhance JA-Ac activity in TfR1-expressing tumors.

 GI_{50} = half maximal growth inhibition.

EC₅₀ =half maximal effective concentration.

^[x]CI = combination index, CI < 1 suggests synergistic effec

Figure S1. A) Growth inhibitory effect of (–)-jerantinine A acetate in MDA-MB-231 breast cancer cell line and non-transformed MCF-10A cell line. **B)** Growth inhibitory effect of (–)-jerantinine A in non-transformed MCF-10A cell line. Cell numbers were quantified by CyQUANT assay after 5 days treatment of indicated concentrations (error bars indicate SEM; n=6). IC₅₀ values were calculated using GraphPad Prism.

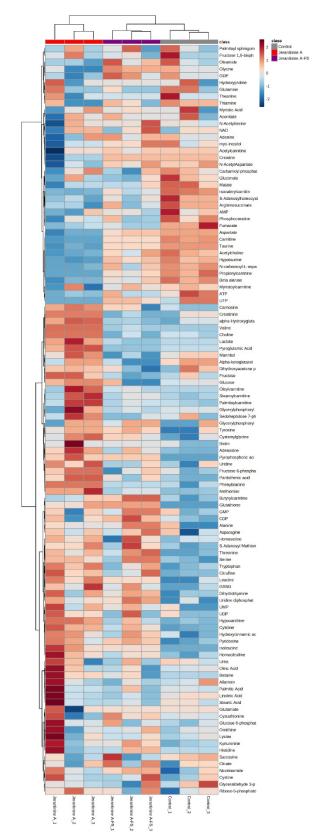


Figure S2. Clustered heatmap of all the normalized metabolites between groups of 5 μ M (–)-jerantinine A, 5 μ M (–)-jerantinine A fluorosulfate, and vehicle control.

Enrichment Overview (top 25)

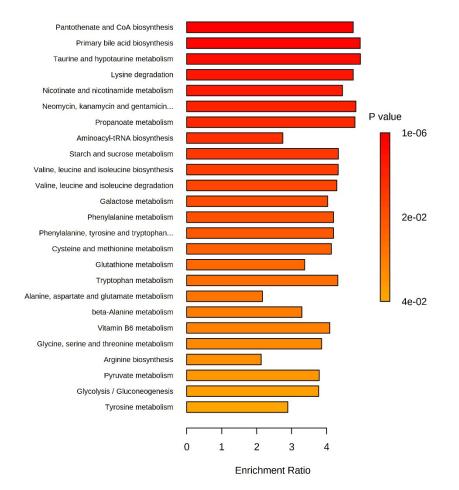
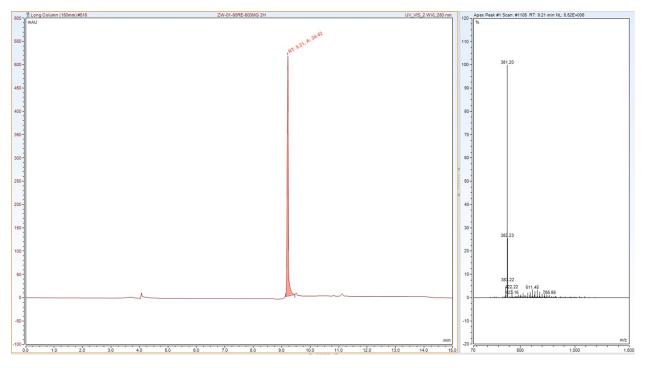
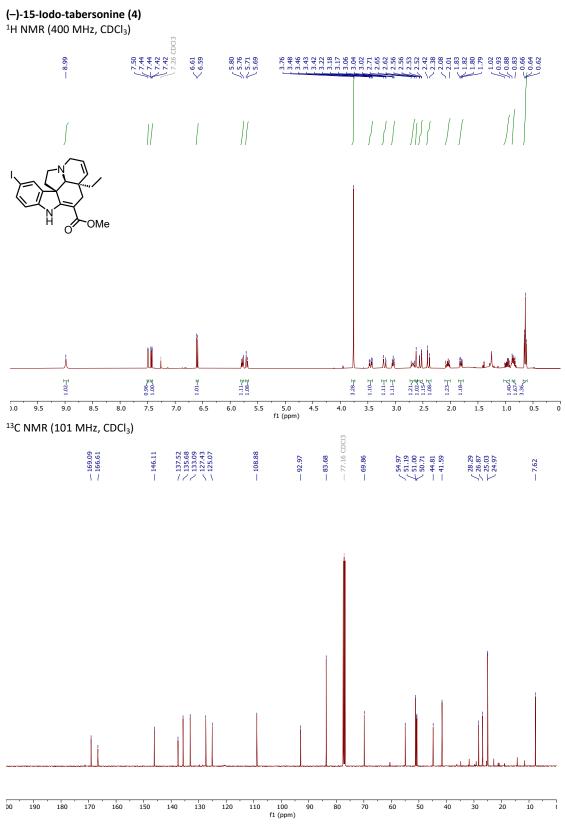
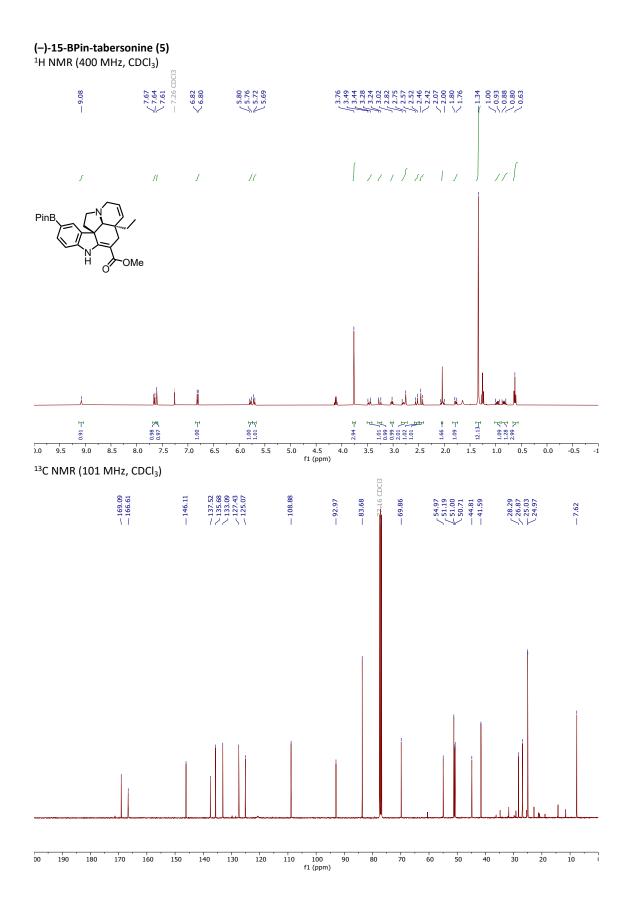
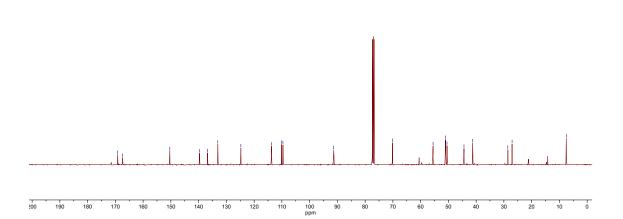


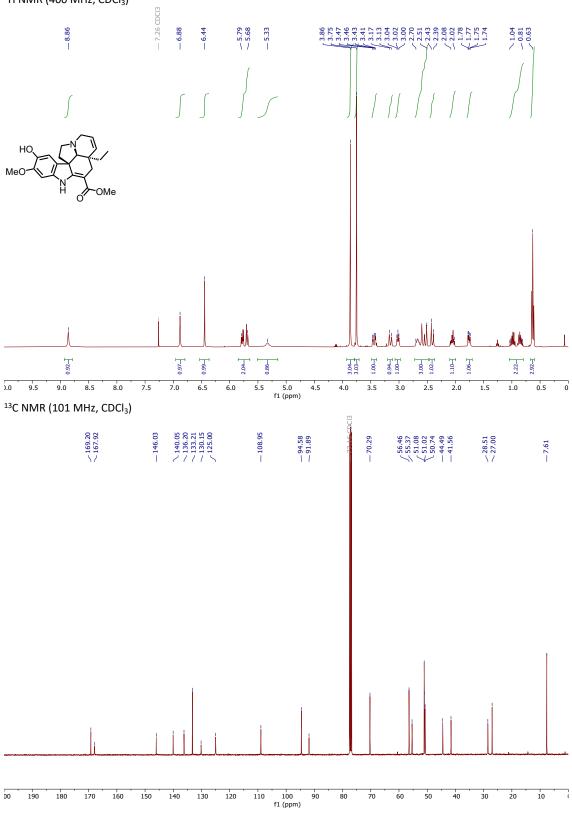
Figure S3. Overview of top 25 enriched metabolite sets between control and 5 μ M (–)-jerantinine A.

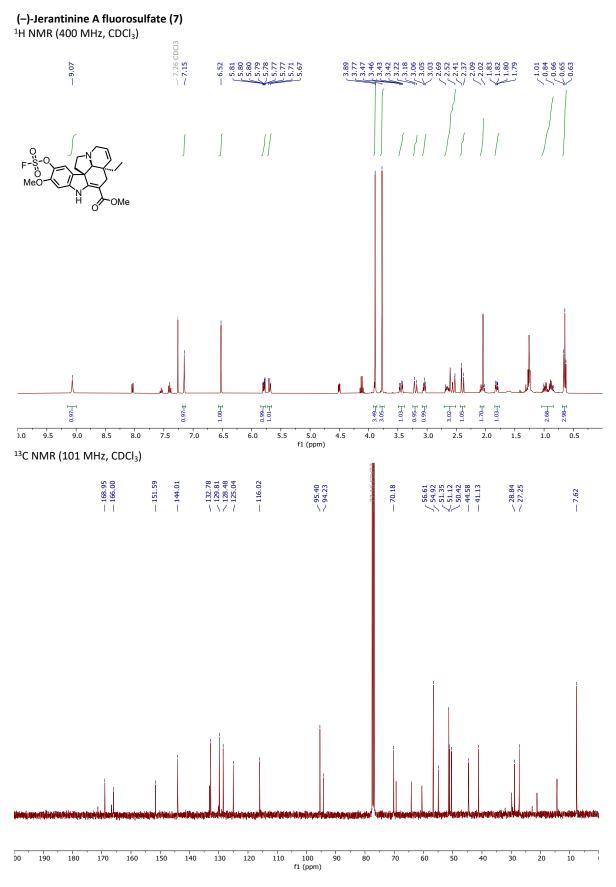
	Total	Hits	Statistic	Expected	Raw p	Holm p	FDR
	Cmpd		Q	Q			
Pantothenate and CoA biosynthesis	19	4	95.182	20	1.32E-06	6.98E-05	6.98E-05
Primary bile acid biosynthesis	46	2	99.25	20	1.30E-05	0.000674	0.000233
Taurine and hypotaurine metabolism	8	2	99.391	20	1.32E-05	0.000674	0.000233
Lysine degradation	25	2	95.174	20	3.99E-05	0.001996	0.000529
Nicotinate and nicotinamide metabolism	15	3	89.057	20	0.000283	0.01387	0.003001
Neomycin, kanamycin and gentamicin biosynthesis	2	2	96.793	20	0.00034	0.016316	0.003003
Propanoate metabolism	23	1	96.201	20	0.000548	0.025767	0.004151
Aminoacyl-tRNA biosynthesis	48	16	54.898	20	0.000848	0.039031	0.005214
Starch and sucrose metabolism	18	4	86.692	20	0.000885	0.03984	0.005214
Valine, leucine and isoleucine biosynthesis	8	4	86.591	20	0.001569	0.069044	0.007685
Valine, leucine and isoleucine degradation	40	3	85.788	20	0.001721	0.074009	0.007685
Galactose metabolism	27	5	80.62	20	0.00174	0.074009	0.007685
Phenylalanine metabolism	10	2	83.902	20	0.002494	0.10226	0.009442
Phenylalanine, tyrosine and tryptophan biosynthesis	4	2	83.902	20	0.002494	0.10226	0.009442
Cysteine and methionine metabolism	33	5	82.732	20	0.004003	0.15612	0.013546
Glutathione metabolism	28	7	67.45	20	0.004089	0.15612	0.013546
Tryptophan metabolism	41	2	86.439	20	0.005108	0.189	0.015925
Alanine, aspartate and glutamate metabolism	28	12	43.366	20	0.006166	0.22197	0.018155
beta-Alanine metabolism	21	4	65.852	20	0.008721	0.30522	0.024326
Vitamin B6 metabolism	9	1	81.852	20	0.013184	0.44827	0.034939
Glycine, serine and threonine metabolism	33	7	77.151	20	0.015684	0.51756	0.039583
Arginine biosynthesis	14	10	42.523	20	0.020679	0.66174	0.049818
Pyruvate metabolism	22	2	75.84	20	0.02276	0.70555	0.052446
Glycolysis / Gluconeogenesis	26	4	75.495	20	0.024061	0.72183	0.053135
Tyrosine metabolism	42	2	57.879	20	0.035747	1	0.075785
Histidine metabolism	16	4	43.018	20	0.042103	1	0.085825
Amino sugar and nucleotide sugar metabolism	37	4	65.77	20	0.045227	1	0.08878
Fructose and mannose metabolism	20	3	64.827	20	0.047539	1	0.089984

Table S2. Metabolite set enrichment analysis of (–)-jerantinine A treated MDA-MB-231 cells.

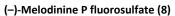




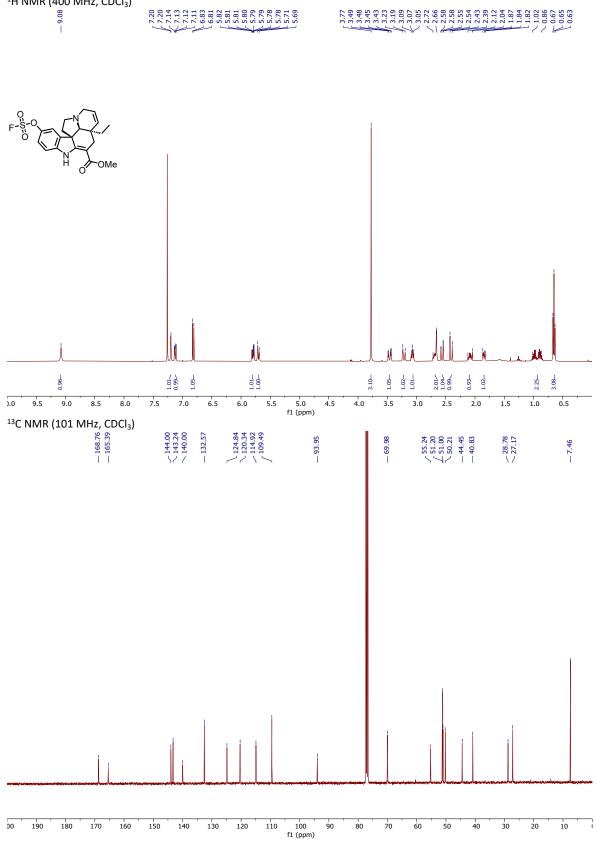

Figure S4. LC-MS chromatogram of oxidation of (–)-melodinine P using Ag₂O to (–)-jerantinine A iminoquinone.


NMR spectra of synthesized compounds

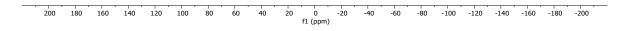


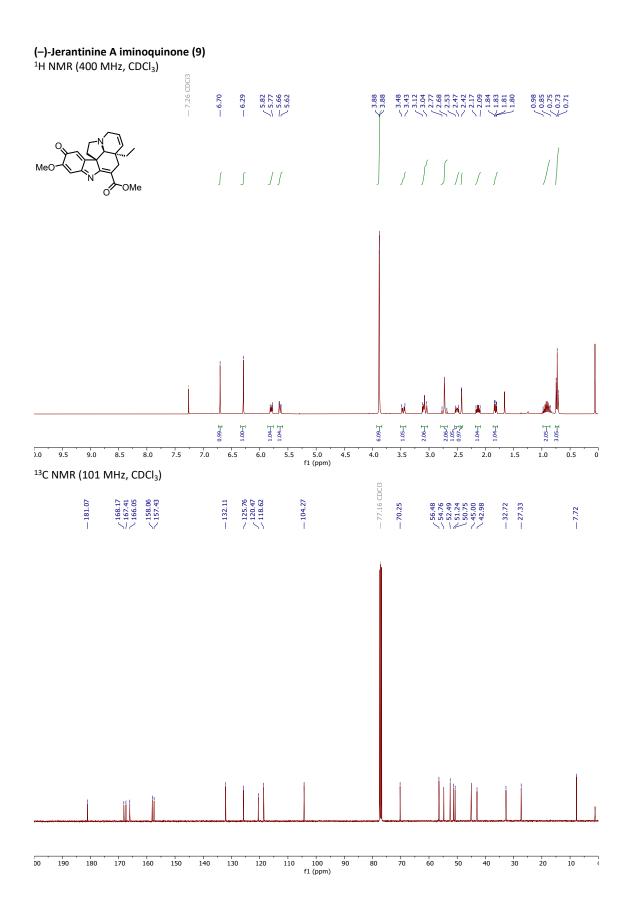
(–)-Melodinine P (6) ¹H NMR (400 MHz, CDCl₃) ---- 7.26 CDCI: √ 6.81
√ 6.67
√ 6.60 $\underset{\mathsf{5.72}}{\overset{\mathsf{5.80}}{\times}}$ 1.05 0.95 0.91 0.82 0.64 [] || [[HO, OMe Ä 1.05⊈ 1.03 1.09∄ 1.05 Firi 1.63<u>–</u> 3.34 1.12 2.18 1.13 1.27 3.16 1.26-T).0 7.0 6.5 5.0 f1 (ppm) 2.0 9.0 8.0 4.5 3.5 2.5 1.0 0 8.5 7.5 6.0 5.5 3.0 1.5 0.5 9.5 4.0 ¹³C NMR (101 MHz, CDCl₃) 139.69
 136.80
 133.09 ~169.17 ~167.41 ∠113.75 ∠110.10 ∠109.61 -70.17 55.51 51.04 551.04 50.50 50.50 -41.23 ~28.57 -7.52

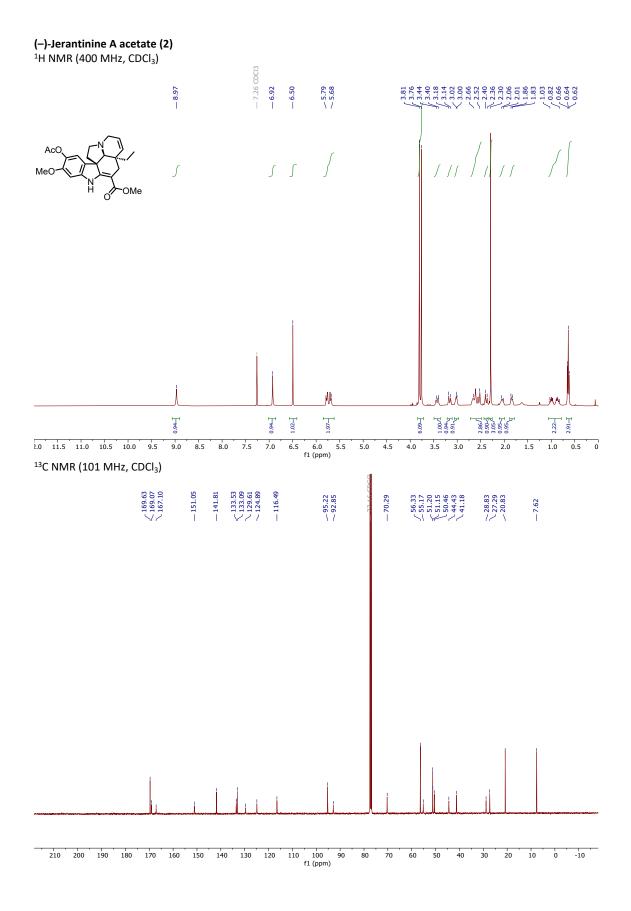

(-)-Jerantinine A (1) ¹H NMR (400 MHz, CDCl₃)



¹⁹F NMR (377 MHz, CDCl₃)


200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm




¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (377 MHz, CDCl₃)

References

1. F. Chen, M. Lei and L. Hu, Synthesis, 2014, 46, 3199-3206.

2. J. Kang, T. R. Lewis, A. Gardner, R. B. Andrade and R. E. Wang, Org. Biomol. Chem., 2022, 20, 3988-3997.

3. K. H. Lim, O. Hiraku, K. Komiyama and T. S. Kam, J. Nat. Prod., 2008, 71, 1591-1594.

4. T. Chung, L. Garcia, M. M. Swamynathan, F. E. M. Froeling, L. C. Trotman, D. A. Tuveson and S. K. Lyons, *bioRxiv*, 2022, DOI: 10.1101/2022.05.30.493733, 2022.2005.2030.493733.

5. G. Tiscornia, O. Singer and I. M. Verma, Nat. Protoc., 2006, 1, 241-245.