Hypoxia-activated prodrugs of phenolic olaparib analogues for tumour-selective chemosensitisation.

Way Wua Wong, Sophia O'Brien-Gortner, Robert F. Anderson, William R. Wilson, Michael P. Hay and Benjamin D. Dickson

Key Structures
General Information
Assignment of alkene stereochemistry
Synthesis of Compounds
References
NMR spectra for compounds $4-11,18,38-40$ and $44-46$
HPLC traces for compounds $4-11,18,38$ - 40 and 44 - 46
pp. 1
pp. 2
pp. 2
pp. 5
pp. 27
pp. 28
pp. 58

Key Structures

57

38

44

45

Figure S1: Structures of key compounds included in biochemical and cellular analyses.

General Information

DCM, DMF, MeCN and THF were purchased pre-dried and stored over molecular sieves from Acros Organics. All other reaction solvents were analytical grade. For lithiation reactions analytical grade THF was pre-dried over sodium, then distilled from sodium benzophenone ketyl prior to use. Non-aqueous reactions were carried out under a nitrogen atmosphere unless otherwise noted. Commercial reagents were used without purification. Flash column chromatography was carried out on a silica gel solid phase (Merck 230-400 mesh) using distilled laboratory grade solvents. Thin layer chromatography was carried out using Merck $60 \mathrm{~F}_{254}$ aluminium plates pre-coated with silica. Compounds were identified using UV fluorescence and/or staining with either ninhydrin in ethanol/glacial acetic acid (95:5) (with heating), or iodine on silica gel. Melting points were determined on an Electrothermal 2300 Melting Point Apparatus. High resolution mass spectra (HRMS) were measured on an Agilent Technologies 6530 Accurate-Mass Quadrupole Time of Flight (Q-TOF) LC/MS interfaced with an Agilent Jet Stream Electrospray lonisation (ESI) source allowing positive or negative ions detection. Low-resolution mass spectra (LRMS) were gathered by direct injection of methanolic solutions into an Agilent 6120 mass spectrometer using atmospheric pressure chemical ionization (APCI) mode with a fragmentor voltage of 50 V and a drying gas temperature of $250^{\circ} \mathrm{C}$. NMR spectra were recorded on a Bruker Avance 400 spectrometer (${ }^{1} \mathrm{H}$ nuclei, 400 MHz ; ${ }^{13} \mathrm{C}$ nuclei, 100 MHz) in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ unless specified. All chemical shift (δ) values are reported in parts per million (ppm) relative to the residual ${ }^{1} \mathrm{H}$ resonance from the deuterated solvent, coupling constants are reported in $\mathrm{Hertz}(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ spectral assignments were made via interpretation of HSQC, HMBC and APT experiments. Final products were analysed by reversephase HPLC (Agilent Zorbax Eclipse XDB C8 $5 \mu \mathrm{~m}$ column, $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$; or Alltech Altima C8 5 $\mu \mathrm{m}$ column, $150 \mathrm{~mm} \times 2.1$;) using an Agilent HP1100 equipped with a photodiode array detector. Mobile phases were gradients of $80 \% \mathrm{CH}_{3} \mathrm{CN} / 20 \% \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ in 45 mM ammonium formate at pH 3.5 and 0.5 $-1.0 \mathrm{~mL} / \mathrm{min}$. Purity was determined by monitoring at $330 \pm 50 \mathrm{~nm}$. AcOH refers to acetic acid, DCM refers to dichloromethane, DIPEA refers to diisopropylethylamine, DMF refers to dimethylformamide, $\mathrm{Et}_{2} \mathrm{O}$ refers to diethylether, EtOAc refers to ethyl acetate, EtOH refers to ethanol, LiHMDS refers to lithium hexamethyldisilazide, MeOH refers to methanol, MeCN refers to acetonitrile, NEt_{3} refers to triethylamine, PhMe refers to toluene, THF refers to tetrahydrofuran, X4 refers to petroleum ether, boiling fraction $40-60^{\circ} \mathrm{C}$.

Assignment of alkene stereochemistry

For alkenes where both isomers were isolated it was possible to organise the products into two distinct groups based on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of the olefinic CH (Table S1). The groupings could be defined as Group A: $\delta_{н} 6.86-7.06 \mathrm{ppm} ; \delta_{\mathrm{c}} 108.0-113.3 \mathrm{ppm}$ and Group B: $\delta_{н} 6.39-7.00 \mathrm{ppm}$; $\delta_{\mathrm{c}} 102.4$ 109.2 ppm . The ${ }^{13} \mathrm{C}$ signal is more diagnostic as there is significant overlap in the ${ }^{1} \mathrm{H}$ signal range, however in cases where the ${ }^{13} \mathrm{C}$ signal leaves ambiguity the ${ }^{1} \mathrm{H}$ signal can in some cases resolve this. Miura et al. ${ }^{1}$ reported the Z-isomer of alkene 34 , with assignment provided by analysis of NOE enhancements and based on this we tentatively assigned Group A as the E-isomer and Group B as the Z-isomer. A NOESY experiment for alkene 50 (Figure S1, Figure S2) supported this assignment and all other alkene stereochemistry has been assigned on this basis. In all except one instance (benzofuranone 55) when only a single isomer was isolated it was the E-isomer.

Table S1: Alkene isomer 1 H and 13 C shifts $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$ unless specified) for olefinic CH

	Group A (E)		Group B (Z)	
Compound	Alkene ${ }^{1} \mathrm{H}$ (ppm)	Alkene ${ }^{13} \mathrm{C}$ (ppm)	Alkene ${ }^{1} \mathrm{H}$ (ppm)	Alkene ${ }^{13} \mathrm{C}$ (ppm)
33	6.99	112.4	6.85	109.2
34	$6.90{ }^{1}$	$112.8{ }^{1}$	6.39^{1}	107.0^{1}
35	6.92	110.8	6.80	105.3
36	6.95	112.4	6.81	106.2
37	n.i.	n.i.	$6.70{ }^{1}$	$104.3{ }^{1}$
41	n.i.	n.i.	6.79	110.4
42	7.06	113.3	6.96	106.9
43	n.i.	n.i.	6.84	105.7
47	6.98	110.5	6.87	107.2
48	7.01	111.2	7.00	104.8
49	6.89	109.0	6.84	103.3
50	6.93	110.5	6.85	104.3
51	6.86	108.0	6.76	102.4
52	6.90	112.0	6.81	108.9
53	n.i.	n.i.	6.99	105.0
54	n.i.	n.i.	6.88	103.7
55	7.02	112.0	n.i.	n.i.
56	6.93	109.5	6.88	103.7

n.i.: Not isolated. ${ }^{1}{ }^{1}$ rom CDCl_{3} spectrum.

Figure S2: (E) - 50 NOESY experiment key correlations. Through space correlations between 6 ' -H and $3-\mathrm{C}=\mathrm{CH}$, and $2^{\prime}-\mathrm{H}$ and $3-\mathrm{C}=\mathrm{CH}$ support assignment as E . Weak correlation between $4-\mathrm{H}$ and $3-\mathrm{C}=\mathrm{CH}$ is only present on one axis and is likely an artifact, providing further support to assignment as E.

Figure S3: $(Z)-50$ NOESY experiment key correlation. Correlation between $4-\mathrm{H}$ and $3-\mathrm{C}=\mathrm{CH}$ is present on both axes supporting assignment as Z. Single weak correlation between $2^{\prime}-\mathrm{CH}$ and $4-\mathrm{H}$ on one axis is likely an artifact, and there are no correlations between $4-\mathrm{H}$ and $6^{\prime}-\mathrm{CH}$ providing further support to assignment as Z.

Synthesis of Compounds

General Procedure B - Ring expansion (benzyl sidechain)

Benzofuranone ($10 \mathrm{mg} / \mathrm{mL}$) in $1: 1 \mathrm{EtOH} /$ hydrazine hydrate (aq.) was stirred at $50^{\circ} \mathrm{C}$ for 18 h then volatiles were removed in vacuo to give the crude product.

General Procedure C - Trigger installation

To phenol in DMF ($25 \mathrm{mg} / \mathrm{mL}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5-3 eq.), followed by chloromethyl nitroimidazole (1.1 eq.) then the mixture was stirred $7-18 \mathrm{~h}$ at room temperature or $50^{\circ} \mathrm{C}$, then diluted with water. Product was collected by filtration, or extracted from the aqueous fraction with EtOAc, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and solvent was removed in vacuo.

General Procedure D - Horner-Wadsworth-Emmons olefination

To a solution of phosphonate in THF ($20 \mathrm{mg} / \mathrm{mL}$) at $-78^{\circ} \mathrm{C}$ was added a 1 M solution of LiHMDS in THF (1.1 eq.) dropwise and the resulting solution was stirred for 1 h . A solution of aldehyde in THF (30 $\mathrm{mg} / \mathrm{mL}, 1.05 \mathrm{eq}$.) was added dropwise and the resulting mixture stirred a further 1 h at $-78{ }^{\circ} \mathrm{C}$, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, allowed to warm to room temperature and diluted with 1 M HCl . The aqueous fractions were extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo.

General Procedure E-Demethylation

To a solution of aryl ether in DCM ($20 \mathrm{mg} / \mathrm{mL}$) at $0^{\circ} \mathrm{C}$ was added a 1 M solution of BBr_{3} in DCM (6 eq .) and the mixture was stirred at room temperature for 18 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by portionwise addition of ice, then the mixture was allowed to return to room temperature and extracted with DCM. The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo.

5-(chloromethyl)-1-methyl-2-nitro-1H-imidazole (16)

To alcohol $12(1.0 \mathrm{~g}, 6.4 \mathrm{mmol})$ in THF (20 mL) was added DIPEA ($1.3 \mathrm{~mL}, 7.6 \mathrm{mmol}$), and methanesulfonyl chloride $(0.60 \mathrm{~mL}, 7.6 \mathrm{mmol})$. The resulting mixture was stirred 0.5 h , diluted with EtOAc (40 mL), washed with $1 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with a gradient (30-100\%) of EtOAc/X4 to give the title compound ($1.1 \mathrm{~g}, 98 \%$) as a yellow solid: mp $99-100^{\circ} \mathrm{C}$ (lit. $\left.{ }^{2} \mathrm{mp} 94-96{ }^{\circ} \mathrm{C}\right) . \delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.19$ $(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \operatorname{LRMS} 176.1\left(100 \%, \mathrm{M}^{35}+\mathrm{H}\right), 178.1\left(36 \%, \mathrm{M}^{37}+\mathrm{H}\right)$. These data are in good agreement with literature values. ${ }^{2}$
(E)-2-(4-Bromostyryl)-1-methyl-5-nitro-1H-imidazole (15)

To EtOH (200 mL) was added sodium ($2.0 \mathrm{~g}, 89 \mathrm{mmol}$) portionwise, with stirring until all sodium was consumed. 1,2-Dimethyl-5-nitro-1H-imidazole ($5.0 \mathrm{~g}, 35 \mathrm{mmol}$) was added portionwise then the mixture was stirred for 0.5 h , and 4-bromobenzaldehyde added. The mixture was heated to $65^{\circ} \mathrm{C}$ for 18 h , cooled to room temperature and partitioned between DCM (200 mL) and water (100 mL). The organic phase was collected and the aqueous fraction extracted twice more with DCM (200 mL), the combined organic fractions were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with EtOAc/X4 (33\%) to give the title compound (3.6 $\mathrm{g}, 33 \%$) as a yellow solid: $\mathrm{mp} 238-240^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.09(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}), 7.82(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, 2-$ $\mathrm{CCH}), 7.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{CCH}\right), 4.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$. LRMS $(\mathrm{M}+\mathrm{H}) 308.9(100 \%), 310.0(100 \%)$. These data are consistent with literature values. ${ }^{3}$

(1-Methyl-5-nitro-1H-imidazol-2-yl)methanol (13)

Ozone was bubbled through a solution of alkene $15(0.6 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{DCM} / \mathrm{MeOH}(1: 1,54 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h with the headspace vented into a 10% aqueous solution of NaI . The ozone feed was switched with O_{2} for 5 minutes, then N_{2} for 30 minutes as the mixture was warmed to $-40{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{NaBH}_{4}(70 \mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{EtOH}(6 \mathrm{~mL})$ was added dropwise over 0.5 h and the mixture was slowly warmed to room temperature, then a further portion of $\mathrm{NaBH}_{4}(70 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added and the reaction stirred for 3 h , treated with $\mathrm{AcOH}(2.5 \mathrm{~mL})$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with EtOAc to give the title product ($0.23 \mathrm{~g}, 74 \%$) as a tan solid: mp $111-113^{\circ} \mathrm{C}$ (lit. $\left..^{4} 115-116^{\circ} \mathrm{C}\right) . \delta \mathrm{\delta} 8.01(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}), 5.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{OH}), 4.58$ (2H, d, J = $\left.5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$. LRMS (M+H) 158.2 (100\%).

2-(Chloromethyl)-1-methyl-5-nitro-1H-imidazole (17)

To alcohol $13(0.10 \mathrm{~g}, 0.64 \mathrm{mmol})$ in THF (2 mL) was added DIPEA ($0.13 \mathrm{~mL}, 0.76 \mathrm{mmol}$) and methanesulfonyl chloride ($0.060 \mathrm{~mL}, 0.76 \mathrm{mmol}$). The resulting mixture was stirred for 0.5 h , diluted with EtOAc (10 mL), washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{X} 4$, to give the title compound ($94 \mathrm{mg}, 86 \%$) as a beige solid: mp $39-40{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 43.5-44{ }^{\circ} \mathrm{C}$). $\mathrm{\delta H}_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.96(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}), 4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right) . \operatorname{LRMS}(\mathrm{M}+\mathrm{H}) 176.1$ (100\%), 178.1 (32\%). These data are in good agreement with literature values. ${ }^{4}$

4-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzyl)-2-((1-methyl-2-nitro-1H-imidazol-5-yl)methyl)phthalazin-1(2H)-one (18)

To olaparib ($0.30 \mathrm{~g}, 0.69 \mathrm{mmol}$) in DMF (5 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.45 \mathrm{~g}, 1.4 \mathrm{mmol})$ followed by chloride $16(0.18 \mathrm{~g}, 1.5 \mathrm{mmol})$ and the resulting mixture was stirred for 25 h . The mixture was diluted with water (25 mL), filtered and the resulting solid collected by filtration. The crude compound was purified by semi-preparative HPLC ($\mathrm{MeCN}, \mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{H}$) to give the title compound ($0.08 \mathrm{~g}, 20 \%$) as a colourless solid: mp $122-125^{\circ} \mathrm{C}$. $\delta \mathrm{H} 8.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7,1.2 \mathrm{~Hz}, 8-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.6 \mathrm{~Hz}$, $5-\mathrm{H}), 7.93$ (1 H, br dd, $J=8.3,1.2 \mathrm{~Hz}, 6-\mathrm{H}$), 7.87 ($1 \mathrm{H}, \mathrm{td}, J=7.9,1.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.45-7.40\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right)$, $7.35\left(1 \mathrm{H}, \mathrm{br}\right.$ d, J = $\left.5.1 \mathrm{~Hz} 2^{\prime}-\mathrm{H}\right), 7.21\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.15\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime-}-\mathrm{H}\right), 5.43\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{NCH}_{2}\right)$, $4.35\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CCH}_{2}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.85-3.10\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}\right.$), 2.07 1.86 (1H, m, 1"-CH), $0.78-0.67$ ($4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime-} \mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). סc 171.8 (4"-NC=O), 164.5 (1"-NC=O), 158.5
 134.2 (6-CH), 132.6 ($7-\mathrm{CH}$), 132.4 ($6^{\prime}-\mathrm{CH}, \mathrm{JC-C-C-F}=8.0 \mathrm{~Hz}$), $129.5\left(2^{\prime}-\mathrm{CH}, \mathrm{J}_{\text {C-C-C.F }}=3.7 \mathrm{~Hz}\right.$), 129.1 (4a-C), 128.9 (4"'-CH), 127.8 ($8 \mathrm{a}-\mathrm{C}$), 127.0 ($8-\mathrm{CH}$), 126.1 ($5-\mathrm{CH}$), 124.1 ($3^{\prime}-\mathrm{C}, ~ J c-\mathrm{C}-\mathrm{F}=18.1 \mathrm{~Hz}$), 116.3 ($5^{\prime}-\mathrm{CH}, \mathrm{J}_{\mathrm{c}-\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}$), $47.5-44.8$ and $42.5-41.4\left(\mathrm{~m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}\right), 44.0\left(\mathrm{NCH}_{2}\right)$, $36.8\left(4-\mathrm{CCH}_{2}\right), 34.9\left(\mathrm{NCH}_{3}\right), 10.8\left(1^{\prime \prime \prime}-\mathrm{CH}\right)$, $7.6\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right)$. HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{FN}_{7} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})$ $\mathrm{m} / \mathrm{z} 564.2209$, found 574.2203 (-1.02 ppm). HPLC purity 99.7%

2-Fluoro-5-formylbenzoic acid (22)

5-(Diethoxymethyl)-2-fluorobenzonitrile

To 2-fluoro-5-formylbenzonitrile ($5.0 \mathrm{~g}, 34 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{Cl}(0.36 \mathrm{~g}, 6.7 \mathrm{mmol})$ in EtOH (45 mL) at $0^{\circ} \mathrm{C}$ was added triethyl orthoformate ($8.4 \mathrm{~mL}, 50 \mathrm{mmol}$) and the mixture was warmed to room temperature and stirred for 18 h . Solvent was removed in vacuo, residual solids were separated by filtration, washing with EtOAc, then solvent was removed in vacuo and the crude product was purified by chromatography, eluting with 30% EtOAc/X4 to give the title compound $(6.3 \mathrm{~g}, 84 \%)$ as a colourless oil. $\mathrm{\delta H}_{(}\left(\mathrm{CDCl}_{3}\right) 7.77$ (1H, dd, $J=6.1,2.1 \mathrm{~Hz}, 6-\mathrm{H}$), 7.71 (1H, ddd, $J=8.7,5.2,2.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, 3-\mathrm{H})$ $5.49(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{CCH}), 3.64-3.48\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.25\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{5}$

2-Fluoro-5-formylbenzoic acid

$3 \mathrm{M} \mathrm{NaOH}(32 \mathrm{~mL})$ was added to 5-(diethoxymethyl)-2-fluorobenzonitrile ($6.0 \mathrm{~g}, 27 \mathrm{mmol}$) and this slurry was heated to $90^{\circ} \mathrm{C}$ for 3 h . The resulting solution was cooled to $0^{\circ} \mathrm{C}$, the pH was adjusted to 2 with 6 M HCl and the resulting precipitate collected by filtration. Refiltration of the mother liquor after standing produced a second crop. Combination of crops gave the title compound ($4.3 \mathrm{~g}, 95 \%$) as a white solid: mp $160-163^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.57(1 \mathrm{H}, \mathrm{dd}, J=6.9,2.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{ddd}, J$ $=8.6,4.6,2.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,8.6 \mathrm{~Hz}, 3-\mathrm{H}), \mathrm{CO}_{2} \mathrm{H}$ not observed. These data are in good agreement with literature values. ${ }^{5}$ LRMS (M-H) 167.1 (100\%).

4-(Cyclopropanecarbonyl)piperazin-1-ium chloride (20)

Piperazine ($4.6 \mathrm{~g}, 52 \mathrm{mmol}$) was dissolved in acetic acid (50 mL) at $40^{\circ} \mathrm{C}$ and the resulting solution was cooled to room temperature. Cyclopropanecarbonyl chloride ($5.2 \mathrm{~mL}, 58 \mathrm{mmol}$) was added dropwise, then the resulting mixture was stirred for 18 h , and the resulting precipitate was collected by filtration. The filtrate was suspended in PhMe (25 mL) and evaporated to dryness twice, then suspended again in PhMe (30 mL) and stirred overnight, the precipitate was collected by filtration and dried in vacuo to give the title compound ($8.2 \mathrm{~g}, 82 \%$) as white crystals. $\delta \mathrm{H} 9.05\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}{ }^{+} \mathrm{Cl}^{-}\right), 4.00-3.56$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 3.22-2.98\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right), 2.03-1.95\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 0.80-0.70\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ $\mathrm{CH}_{2}, 3^{\prime}-\mathrm{CH}_{2}$). LRMS ($\mathrm{M}+$) 155.2 (100\%)

3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzaldehyde (19)

To aldehyde $22(4.0 \mathrm{~g}, 24 \mathrm{mmol})$ in PhMe (100 mL) was added thionyl chloride ($17.3 \mathrm{~mL}, 238 \mathrm{mmol}$) and the resulting solution was heated to reflux for 1 h , allowed to cool and volatiles removed by vacuum distillation. The crude residue was taken up in DCM (70 mL) and amide $20(5.0 \mathrm{~g}, 26 \mathrm{mmol})$ was added as a solution in $\mathrm{MeCN} / \mathrm{NEt}_{3}(30 / 7 \mathrm{~mL})$. The resulting mixture was stirred 18 h at room temperature, diluted with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, the aqueous layer extracted with EtOAc $(2 \times 30 \mathrm{~mL})$, the combined organic fractions washed with water (30 mL), brine (30 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with EtOAc (100\%) to give the title compound ($4.7 \mathrm{~g}, 65 \%$) as a white foam.
$\delta_{\mathrm{H}} 10.01(1 \mathrm{H}, \mathrm{s} \mathrm{CHO}), 8.12-7.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}-6), 7.57(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-5), 3.93-3.13(8 \mathrm{H}, \mathrm{m}$, $4 \times \mathrm{NCH}_{2}$), $2.11-1.81\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right), 0.83-0.62\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}\right)$. ठc $191.3(\mathrm{CHO}), 171.3$ (4'-
 c-f $=10.0 \mathrm{~Hz}), 131.0\left(2-\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{F}}=5.6 \mathrm{~Hz}\right), 124.8\left(3-\mathrm{C}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=19.4 \mathrm{~Hz}\right), 117.2\left(5-\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=22.8\right.$ $\mathrm{Hz}), 46.9-46.1,45.1-44.3$ and $42.1-41.0\left(\mathrm{~m}, 4 \times \mathrm{NCH}_{2}\right), 10.4\left(2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}\right), 7.13$ (1"-CH). HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 305.1296$, found 305.1293 (-0.86 ppm).

3-(Benzyloxy)-N,N-diethylbenzamide (26)

N, N-Diethyl-3-hydroxybenzamide

To 3-hydroxybenzoic acid ($6.0 \mathrm{~g}, 43 \mathrm{mmol}$) was added thionyl chloride ($24 \mathrm{~mL}, 330 \mathrm{mmol}$) followed by two drops of DMF ($\sim 0.1 \mathrm{~mL}$) and the resulting mixture was stirred at reflux for 1 h . Thionyl chloride was evaporated in vacuo, the residue was dissolved in $\mathrm{PhMe}(100 \mathrm{~mL})$ and the solution once more evaporated to dryness. The residue was dissolved in THF (50 mL) and cooled to $0^{\circ} \mathrm{C}$, then diethylamine $(13.5 \mathrm{~mL}, 130 \mathrm{mmol})$ was added slowly and the mixture stirred for 18 h at room temperature. Solvent was removed in vacuo, the residue dissolved in DCM (50 mL) and the organic layer washed with water $(50 \mathrm{~mL}), \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL) then solvent was removed in vacuo to give the title compound ($4.0 \mathrm{~g}, 48 \%$) as a brown solid: $\mathrm{mp} 74-77^{\circ} \mathrm{C}$ (lit. $84^{\circ}{ }^{\circ} \mathrm{C}^{6}$). $\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.76(1 \mathrm{H}$, br s OH$)$, 7.17 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8,7.8 \mathrm{~Hz}, 5-\mathrm{H}$), $6.90(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.81-6.77(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}), 3.61-3.49(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $3.34-3.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, 6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, 6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{6}$ LRMS (M+H) 194.2, (M-H) 192.2

3-(Benzyloxy)-N,N-diethylbenzamide

To N, N-diethyl-3-hydroxybenzamide ($0.50 \mathrm{~g}, 2.6 \mathrm{mmol}$) in acetone (25 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.72 \mathrm{~g}, 5.2 \mathrm{mmol}), \mathrm{KI}(0.04 \mathrm{~g}, 0.26 \mathrm{mmol})$ and benzyl bromide ($0.34 \mathrm{~mL}, 2.9 \mathrm{mmol}$), then the mixture was stirred at room temperature for 18 h . Volatiles were removed in vacuo and the residue was partitioned between water (25 mL) and EtOAc (25 ml). The organic fraction was collected and the aqueous fraction was washed with EtOAc ($2 \times 25 \mathrm{~mL}$), then the combined organic fractions were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with 30% EtOAc/X4 to give the title compound (0.73 g , quant.) as a golden oil. $\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.45-7.27(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.03-6.92(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.63-3.43(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.33-3.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.31-0.98\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{7}$ LRMS $(\mathrm{M}+\mathrm{H})$ 284.2.

3-(Benzyloxy)-N,N-diethyl-2-formylbenzamide (27)

To THF (50 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added ${ }^{\dagger} \mathrm{BuLi}$ in pentane ($1.6 \mathrm{M}, 10.1 \mathrm{~mL}$, $16.2 \mathrm{mmol})$ followed by a solution of benzamide $\mathbf{2 6}(2.0 \mathrm{~g}, 7.0 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ dropwise. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then DMF ($1.1 \mathrm{~mL}, 14.1 \mathrm{mmol}$) was added dropwise and the mixture allowed to warm to room temperature, After stirring a further 15 min , the reaction was quenched
with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the aqueous fraction was extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$. The combined organic fractions were washed with water (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with 60% EtOAc/X4, to give the title compound ($1.2 \mathrm{~g}, 56 \%$) as a yellow oil. $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 10.56(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 5-\mathrm{H}), 7.48-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz} 6-\mathrm{H}), 5.21$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.59\left(2 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.07\left(2 \mathrm{H}, \mathrm{q}, J=7.15 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 1.32(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, CH_{3}), $1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) . \delta \mathrm{c}\left(\mathrm{CDCl}_{3}\right) 189.5(\mathrm{HC=O}), 170.0(1-\mathrm{CC}=\mathrm{O}), 161.6$ (3-C), 139.6 (1C), 135.9 (Ar-C), $135.7(5-\mathrm{CH}), 129.0(2 \times \mathrm{Ar}-\mathrm{CH}), 128.6(\mathrm{Ar}-\mathrm{CH}), 127.6(2 \times \mathrm{Ar}-\mathrm{CH}), 121.8(2-\mathrm{C}), 119.7$ $(6-\mathrm{CH}), 113.4(4-\mathrm{CH}), 71.1\left(\mathrm{OCH}_{2}\right), 42.7,38.9\left(2 \times \mathrm{NCH}_{2}\right), 13.7,12.4\left(2 \times \mathrm{CH}_{3}\right) . \mathrm{LRMS}(\mathrm{M}+\mathrm{H}) 312.2$.

Dimethyl (7-(benzyloxy)-3-oxo-1,3-dihydroisobenzofuran-1-yl)phosphonate (28)

To tert-butyldimethylsilyl dimethyl phosphite $(2.4 \mathrm{~g}, 11 \mathrm{mmol})$ in benzene $(30 \mathrm{~mL})$ was added a solution of benzamide $27(1.7 \mathrm{~g}, 5.5 \mathrm{mmol})$ in benzene $(8 \mathrm{~mL})$ and the resulting mixture was stirred 18 h at room temperature. Volatiles were removed in vacuo and the residue dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$, then methanesulfonic acid $(0.75 \mathrm{~mL}, 11 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ was added slowly. The resulting mixture was stirred at room temperature for 12 h , then volatiles removed in vacuo, the slurry diluted with water $(25 \mathrm{~mL})$, the aqueous fraction was extracted with DCM $(3 \times 25 \mathrm{~mL})$ and the combined organic fractions were washed with $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{X} 4$, to give the title compound ($1.1 \mathrm{~g}, 56 \%$) as a golden oil that solidified on standing: mp $81-83^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.56-$ $7.47(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.43-7.33(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, 1-\mathrm{H}), 5.22$ $\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{OCH}_{3}\right) . \delta \mathrm{c}\left(\mathrm{CDCl}_{3}\right) 169.7(\mathrm{C}=\mathrm{O}$, d, $J=2.2 \mathrm{~Hz}$), 156.7 ($7 \mathrm{a}-\mathrm{C}$), 154.0 ($7-\mathrm{C}, \mathrm{d}, \mathrm{Jc}_{\text {c-c-c-p }}=3.5 \mathrm{~Hz}$), 135.9 ($\mathrm{Ar}-\mathrm{C}$), 132.2 (3a-C, d, Jc-с-с-p $=4.5$ $\mathrm{Hz}), 131.9\left(4-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{p}}=2.4 \mathrm{~Hz}\right), 128.9(2 \times \mathrm{Ar}-\mathrm{CH}), 128.6(\mathrm{Ar}-\mathrm{CH}), 127.7(2 \times \mathrm{Ar}-\mathrm{CH}), 118.3$ (5$\left.\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{C}-\mathrm{c}-\mathrm{c}-\mathrm{C}-\mathrm{p}}=1.5 \mathrm{~Hz}\right), 117.3\left(6-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{C}-\mathrm{c}-\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 75.4\left(1-\mathrm{CH}, \mathrm{Jc}_{-\mathrm{P}}=168.1 \mathrm{~Hz}\right), 70.9\left(\mathrm{CH}_{2}\right)$, $54.8\left(\mathrm{CH}_{3}, J_{\text {c-O-p }}=6.6 \mathrm{~Hz}\right) 54.3\left(\mathrm{CH}_{3}, \mathrm{~J}_{\text {c-о-p }}=7.2 \mathrm{~Hz}\right) . \operatorname{LRMS}(\mathrm{M}+\mathrm{H}) 349.1$.

Dimethyl (7-hydroxy-3-oxo-1,3-dihydroisobenzofuran-1-yl)phosphonate (23)

To phosphonate $28(0.88 \mathrm{~g}, 2.9 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ was added $5 \% \mathrm{w} / \mathrm{w} \mathrm{Pd} / \mathrm{C}(0.09 \mathrm{~g})$ and the resulting slurry was stirred under $1 \mathrm{~atm} . \mathrm{H}_{2}$ for 18 h , filtered through diatomaceous earth and solvent was removed in vacuo. The crude material was purified by chromatography, eluting with a gradient (1 -2%) of $\mathrm{MeOH} / \mathrm{DCM}$ to give the title compound ($0.55 \mathrm{~g}, 85 \%$) as a white solid: $\mathrm{mp} 151-154{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 9.08(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 7.56-7.48(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 6-\mathrm{H}), 5.73$
($1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 1-\mathrm{H}), 4.04\left(3 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 3.58\left(3 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{OCH}_{3}\right) . \delta \mathrm{c}\left(\mathrm{CDCl}_{3}\right)$ $169.6\left(\mathrm{C}=\mathrm{O}, \mathrm{d}, J_{c-o-c-p}=3.1 \mathrm{~Hz}\right), 152.4\left(7-\mathrm{C}, \mathrm{d}, J_{c-c-c-p}=2.9 \mathrm{~Hz}\right), 132.3\left(5-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\text {c-c-c-c-c-p }}=2.1 \mathrm{~Hz}\right)$, 128.2 (3a-C, d, Jc-c-c-p $=3.7 \mathrm{~Hz}), 126.2$ ($7 \mathrm{a}-\mathrm{C}, \mathrm{d}, \mathrm{Jc}_{\mathrm{c}-\mathrm{c}-\mathrm{p}}=4.2 \mathrm{~Hz}$), $124.1\left(6-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{p}}=2.1 \mathrm{~Hz}\right)$, $118.4(4-\mathrm{CH}, \mathrm{d}, \mathrm{Jc-c-c-c-p}=1.5 \mathrm{~Hz}), 73.6(1-\mathrm{CH}, J=163.7 \mathrm{~Hz}), 55.7\left(\mathrm{CH}_{3}, J_{c-o-p}=7.4 \mathrm{~Hz}\right), 55.3\left(\mathrm{CH}_{3}\right.$, $\left.J_{\mathrm{C}-\mathrm{o}-\mathrm{p}}=7.2 \mathrm{~Hz}\right)$. LRMS (M+H) 259.1.

3-Benzylidene-4-hydroxyisobenzofuran-1(3H)-one (33)

To a solution of phosphonate $23(0.20 \mathrm{~g}, 0.77 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a 1 M solution of LiHMDS in THF ($1.7 \mathrm{~mL}, 1.7 \mathrm{mmol}$) dropwise and the resulting solution was stirred 1 h . A solution of benzaldehyde ($0.08 \mathrm{~mL}, 0.8 \mathrm{mmol}$) in THF (30 mL) was added dropwise and the resulting mixture stirred a further 1 h at $-78^{\circ} \mathrm{C}$, then stirred at room temperature for 18 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and diluted with 1 M HCl . The aqueous fractions were extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with 33% EtOAc/X4, to give the title product ($0.13 \mathrm{~g}, 72 \%$) as a cream solid. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta \mathrm{H} 10.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.51(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{dd}, J=7.4,0.7 \mathrm{~Hz}, 7-\mathrm{H}), 7.36-7.24$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.14(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 5-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}) . \delta c 166.1$ (C=O), 153.6 (4-C), 144.4 (3-C), 133.8 (Ar-C), 132.2 (6-CH), 130.7 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 127.7 (7a-C), 127.1 (Ar-CH), 126.8 ($2 \times \mathrm{Ar}-\mathrm{CH}$), $122.8(3 \mathrm{a}-\mathrm{C}), 121.5(5-\mathrm{CH}), 115.4(7-\mathrm{CH}), 112.4(3-\mathrm{C}=\mathrm{CH})$

Z: $\delta_{\mathrm{H}} 11.30(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 7.79(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \times \mathrm{Ar}-\mathrm{CH}), 7.54-7.37(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{Ar}-$ CH), $7.37-7.21$ ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{Ar}-\mathrm{CH}$), 6.85 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}$). $\delta \mathrm{c} 166.5(\mathrm{C}=\mathrm{O})$, 153.4 (4-C), 143.7 (3-C), 133.8 (Ar-C), $131.6(6-\mathrm{CH}), 129.7(2 \times \mathrm{Ar}-\mathrm{CH}), 128.8(2 \times \mathrm{Ar}-\mathrm{CH}), 128.0(\mathrm{Ar}-\mathrm{CH}), 125.5(3 \mathrm{a}-\mathrm{C}), 124.4$ (7a-C), $121.2(5-C H), 115.7(7-C H), 109.2(3-C=C H) . L R M S(M+H) 239.2$.

4-Benzyl-5-hydroxyphthalazin-1(2H)-one (38)

The reaction was carried out according to General Procedure B with benzofuranone 33 ($44 \mathrm{mg}, 0.19$ mmol) to give the title product (47 mg , quant.) as a white solid: mp $222-224^{\circ} \mathrm{C} . \delta_{\mathrm{H}} 12.43(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $10.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.70(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 8-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 7-\mathrm{H}), 7.27-7.11(6 \mathrm{H}$, m, 6-H, Ar-H), 4.42 (2H, s, CH2). $\delta c 159.0$ (C), 155.0 (5-C), 144.2 (4-C), 139.9 (Ar-C), 132.3 (7-CH), 129.7 ($8 \mathrm{a}-\mathrm{C}$), $128.4(2 \times \mathrm{Ar}-\mathrm{CH}), 128.1(2 \times \mathrm{Ar}-\mathrm{CH}), 125.7(\mathrm{Ar}-\mathrm{CH}), 119.6$ (8-CH), 118.2 (4a-C), 116.3
(6-CH), $59.7\left(\mathrm{CH}_{2}\right)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 253.0972$, found 253.0963 (-3.45 ppm). HPLC purity 99.2\%.

(Z)-3-Benzylidene-4-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (41)

The reaction was carried out according to General Procedure C with benzofuranone 33 ($54 \mathrm{mg}, 0.23$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.10 \mathrm{~g}, 0.69 \mathrm{mmol})$ and chloride $16(44 \mathrm{mg}, 0.25 \mathrm{mmol})$ stirring for 7 h at $50{ }^{\circ} \mathrm{C}$. The crude product was collected by extraction and purified by chromatography, eluting with 70% EtOAc/X4 to give the title product ($47 \mathrm{mg}, 52 \%$) as a white solid: $\mathrm{mp} 221-224^{\circ} \mathrm{C} . \delta_{H} 7.79-7.73(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$, $\left.2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.67(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.62-7.58(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 7.50-7.42\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right)$, $7.37-7.31\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 6.79(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \delta_{\mathrm{c}} 166.0(1-$ C=O), 152.6 (4-C), 146.5 (2"-C), 143.0 (3-C), 133.4 ($\left.1^{\prime}-\mathrm{C}\right), 132.4$ ($5^{\prime \prime}-\mathrm{C}$), 131.9 ($6-\mathrm{CH}$), 129.9 ($2^{\prime}-\mathrm{CH}, 6^{\prime}-$ CH), 129.0 ($4^{\prime \prime}-\mathrm{CH}$), 128.9 ($3^{\prime}-\mathrm{CH}, 5^{\prime}-\mathrm{CH}$), 128.4 ($4^{\prime}-\mathrm{CH}$), 127.2 (3a-C), 124.7 ($7 \mathrm{a}-\mathrm{C}$), 118.5 ($5-\mathrm{CH}$), $117.8(7-\mathrm{CH}), 110.4(3-\mathrm{C}=\mathrm{CH}), 59.8\left(\mathrm{OCH}_{2}\right), 34.5\left(\mathrm{NCH}_{3}\right)$. LRMS $(\mathrm{M}-\mathrm{H}) 376.9$, $\left(\mathrm{M}-\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 237.2$.

4-Benzyl-5-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phthalazin-1(2H)-one (44)

The reaction was carried out according to General Procedure B with benzofuranone 41 ($50 \mathrm{mg}, 0.13$ mmol) to give the title product ($43 \mathrm{mg}, 84 \%$) as a white solid: mp $280-283^{\circ} \mathrm{C} . \delta_{H} 12.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $7.94(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 8-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 7-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 6-\mathrm{H})$, $7.24\left(1 \mathrm{H}, \mathrm{s}, 4{ }^{\prime}-\mathrm{H}\right), 7.10-7.03(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.76-6.71(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.27(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}$) , $4.26(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2}$), $3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \delta \mathrm{c} 158.7$ (1-C=O), 154.2 (5-C), 146.0 (2'-C), 142.5 (4-C), 139.7 ($\mathrm{Ar}-\mathrm{C}$), 132.5 (7-CH), 132.4 ($5^{\prime}-\mathrm{C}$), 129.8 ($8 \mathrm{a}-\mathrm{C}$), 129.1 ($4^{\prime}-\mathrm{CH}$), 127.9 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 127.2 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 125.5 ($\mathrm{Ar}-\mathrm{CH}$), $119.9(4 \mathrm{a}-\mathrm{C})$, $118.6(8-\mathrm{CH}), 116.4(6-\mathrm{CH}), 59.6\left(\mathrm{OCH}_{2}\right), 41.7\left(4-\mathrm{CCH}_{2}\right), 33.8\left(\mathrm{NCH}_{3}\right)$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) \mathrm{m} / \mathrm{z} 414.1173$, found 414.1174 (0.4 ppm). HPLC purity 98.6%

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-4-hydroxyisobenzofuran-1(3H)-one (47)

The reaction was carried out according to General Procedure D with phosphonate 23 ($0.50 \mathrm{~g}, 1.94$ $\mathrm{mmol})$, LiHMDS (4.1 mL) and aldehyde $19(0.62 \mathrm{~g}, 1.1 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with 80% EtOAc/X4 to give the title product ($0.58 \mathrm{~g}, 68 \%$) as a yellow foam. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta \mathrm{H} 10.84$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $7.53(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.43-7.36\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.32-7.25(2 \mathrm{H}$, m, 2'-H, $5^{\prime}-\mathrm{H}$), $7.16\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $7.5 \mathrm{~Hz}, 5-\mathrm{H}$), $6.98(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.82-3.22\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}\right.$, 5"-CH2, 6"-CH2), 2.07 - 1.85 ($1 \mathrm{H}, \mathrm{m}, 1$ "'-CH), 0.81 - 0.66 ($4 \mathrm{H}, \mathrm{m}, 2^{\left.2 "--\mathrm{CH}_{2}, ~ 3 " '-\mathrm{CH}_{2}\right) . ~ \delta c ~} 171.3$ (4"-NC=O), 166.0 ($1-\mathrm{C}=\mathrm{O}$), 164.0 ($1^{\prime \prime}-\mathrm{NC}=\mathrm{O}$) 156.9 ($4^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=245.8 \mathrm{~Hz}$), 153.4 ($4-\mathrm{C}$), 145.3 ($3-\mathrm{C}$), 133.3 ($6^{\prime}-\mathrm{CH}$,
 (7a-C), 122.4 (3'-C, d, Jc-c-. = 18.4), 121.6 (5-CH), 115.7 (7 -CH), 114.4 ($5^{\prime}-\mathrm{CH}, ~ J c-c-$ - $=21.8 \mathrm{~Hz}$), 110.5 $(3-\mathrm{C}=\mathrm{CH}), 10.39\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 7.12\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 4 \times \mathrm{CH}_{2}$ not observed. LRMS (M+H) 437.2 (100%), (M-H) 435.1 (100\%).

Z: $\delta_{\mathrm{H}} 11.38$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $7.97-7.89\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.86\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4,1.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.46-7.38\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.30(1 \mathrm{H}, \mathrm{dd}, J=8.0,0.61 \mathrm{~Hz} 5-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH})$, $3.87-3.22$ ($8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}$), $2.09-1.87$ (1H, m, $1^{\prime \prime-}-\mathrm{CH}$), $0.80-0.65(4 \mathrm{H}, \mathrm{m}$, 2"'-CH2, 3"'-CH2). ठc 171.3 (4"-NC=O), 166.3 (1-C=O), 163.8 (1"-NC=O), 156.8 (4'-C, d, Jc-F = 250.3 Hz), 153.4 ($4-\mathrm{C}$), 144.0 ($3-\mathrm{C}$), 132.7 (6 '-CH, d, Jc-c-c-F $=8.4 \mathrm{~Hz}$), 131.9 ($6-\mathrm{CH}$), 130.9 (1 '-C, d, Jc-c-c-c-$=3.3 \mathrm{~Hz}$), 129.9 (2'-CH, d, Jc-c-c-F = 3.2 Hz), 125.2 (3a-C), 124.4 ($7 \mathrm{a}-\mathrm{C}$), 124.3 ($3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{Jc-c-F}=18.3$ $\mathrm{Hz}), 121.3(5-\mathrm{CH}), 116.5\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{Jc}_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 115.9(7-\mathrm{CH}), 107.2(3-\mathrm{C}=\mathrm{CH}), 10.37\left(1^{\prime \prime \prime-} \mathrm{CH}\right)$, $7.13\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 4 \times \mathrm{CH}_{2}$ not observed. LRMS (M+H) 437.2 (100\%), (M-H) 435.1 (100\%).

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-4-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (52)

The reaction was carried out according to General Procedure C with benzofuranone 47 ($90 \mathrm{mg}, 0.21$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol})$ and chloride $16(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 18 h at room temperature. The crude product was collected by filtration and triturated with MeOH to give the title product ($70 \mathrm{mg}, 58 \%$) as a yellow solid. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta \mathrm{H} 7.79-7.66$ ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}$), 7.63 ($1 \mathrm{H}, \mathrm{brd}$ d, J = $7.1 \mathrm{~Hz}, 6-\mathrm{H}$), $7.34-7.29$ ($1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}$), $7.25-$ $7.20\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.06\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime}-\mathrm{H}\right), 7.05(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 6.90\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{CH}\right), 5.18(2 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH} 2$), $3.85-3.13$ ($8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}$), 3.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), $2.09-1.86$ ($1 \mathrm{H}, \mathrm{m}$, $1^{\prime \prime \prime}-\mathrm{CH}$), $0.80-0.65$ ($4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). $\mathrm{\delta c}_{\mathrm{c}} 171.8$ ($4^{\prime \prime}-\mathrm{NC}=\mathrm{O}$), 165.6 ($1-\mathrm{C}=\mathrm{O}$), 163.8 ($1^{\prime \prime}-\mathrm{NC}=\mathrm{O}$), 157.0 ($4^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=242.9 \mathrm{~Hz}$), 152.6 ($4-\mathrm{C}$), 146.0 ($2^{\prime \prime \prime \prime}-\mathrm{C}$), 144.3 (3-C), 132.9 ($6-\mathrm{CH}$), 132.7 ($6^{\prime}-\mathrm{CH}, \mathrm{d}$, $\left.J_{C-C-C-F}=6.6 \mathrm{~Hz}\right), 131.6\left(5^{\prime \prime \prime-}-C\right), 130.7\left(2^{\prime}-C H, d, J_{C-C-C-F}=3.5 \mathrm{~Hz}\right), 130.5\left(1^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)$,
128.7 ($4^{\prime \prime \prime \prime}-\mathrm{CH}$), 128.0 (7a-C), 124.7 (3a-C), 122.4 ($3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{F}}=15.4 \mathrm{~Hz}$), 118.5 (5-CH), 117.7 (7$\mathrm{CH}), 114.2\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 112.0(3-\mathrm{C}=\mathrm{CH}), 59.9\left(\mathrm{OCH}_{2}\right), 33.8\left(\mathrm{NCH}_{3}\right), 10.36\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}\right.$, $\left.3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 7.12\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 4 \times \mathrm{CH}_{2}$ not observed. LRMS $(\mathrm{M}+\mathrm{H}) 576.2(24 \%),\left(\mathrm{M}_{5}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 435.2(100 \%)$.

Z: $\delta_{\text {н }} 7.93-7.86\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.86-7.81\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 5-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 7-\mathrm{H}), 7.47\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime \prime}-\mathrm{H}\right), 7.42\left(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 6.81(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{C}=\mathrm{CH}), 5.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.87-3.19\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}\right)$, $2.10-1.86$ ($1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{CH}$), $0.80-0.67\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right) . \delta \mathrm{c} 171.8$ (4"-NC=O), 166.3 (1-C=O), 164.2 ($1^{\prime \prime}-\mathrm{NC}=\mathrm{O}$), 157.4 ($4^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=249.2 \mathrm{~Hz}$), 153.2 (4-C), 147.0 ($\left.2^{\prime \prime \prime \prime}-\mathrm{C}\right), 143.8(3-\mathrm{C}), 133.6$ ($6^{\prime}-\mathrm{CH}$,
 c-c-ғ $=3.1 \mathrm{~Hz}), 129.6\left(4^{\prime \prime \prime}-\mathrm{CH}\right), 127.4(3 \mathrm{a}-\mathrm{C}), 125.2(7 \mathrm{a}-\mathrm{C}), 124.8\left(3^{\prime}-\mathrm{CH}, \mathrm{J}_{\text {c-c-F }}=18.7 \mathrm{~Hz}\right), 119.1$ (5$\mathrm{CH}), 118.4(7-\mathrm{CH}), 117.0\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 108.9(3-\mathrm{C}=\mathrm{CH}), 60.3\left(\mathrm{OCH}_{2}\right), 35.0\left(\mathrm{NCH}_{3}\right), 10.9$ $\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 7.60\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 4 \times \mathrm{CH}_{2}$ not observed. LRMS (M+H) $576.2(24 \%),\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 435.2$ (100\%).

5-Methoxyisobenzofuran-1(3H)-one (29)

5-Methoxyisobenzofuran-1,3-dione

A solution of 4-methoxyphthalic acid ($5.0 \mathrm{~g}, 26 \mathrm{mmol}$) in acetic anhydride (50 mL) was heated to reflux for 1 h , cooled and volatiles removed in vacuo. The crude residue was dissolved in EtOAc (100 mL) and evaporated to dryness to give the title compound (4.5 g , quant.) as a white solid: mp $91-93^{\circ} \mathrm{C}$. ठн $8.00(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 6-\mathrm{H}), 3.97$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{8} \mathrm{LRMS}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 163.1.

5-Methoxyisobenzofuran-1(3H)-one

To $\mathrm{NaBH}_{4}(0.96 \mathrm{~g}, 25 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of 5-methoxyisobenzofuran-1,3-dione ($4.5 \mathrm{~g}, 25 \mathrm{mmol}$) in THF (50 mL). The resulting mixture was stirred for 1.5 h at room temperature, then cooled to $0^{\circ} \mathrm{C}$, acidified to pH 1 with 6 M HCl , and the aqueous fraction was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \times 50 \mathrm{~mL})$, then solvent was removed in vacuo. The resulting residue was taken up in $6 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and stirred at reflux for 18 h , then cooled to room temperature and the aqueous fraction extracted with EtOAc $(5 \times 50 \mathrm{~mL})$, the combined organic fractions were washed with brine and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with DCM to give the title compound ($3.3 \mathrm{~g}, 80 \%$) as a white solid: mp $114-116{ }^{\circ} \mathrm{C}$ (lit. ${ }^{9} 110-$ $\left.111^{\circ} \mathrm{C}\right) . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.83(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.04(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 6-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{9}$ LRMS (M+H) 165.2.

2-Formyl-4-methoxybenzoic acid (31)

To benzofuranone $30(7.7 \mathrm{~g}, 47 \mathrm{mmol})$ in chlorobenzene $(100 \mathrm{~mL})$ was added N-bromosuccinimide (9.2 $\mathrm{g}, 52 \mathrm{mmol})$ and azobisisobutyronitrile ($0.77 \mathrm{~g}, 4.7 \mathrm{mmol}$), then the mixture was heated to $85^{\circ} \mathrm{C}$ for 2 h. Water (100 mL) was added and the reaction heated to reflux for 18 h , then the mixture was cooled to room temperature and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo. The crude product was dissolved in $2 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$, stirred for 2 h then cooled to $0{ }^{\circ} \mathrm{C}$, acidified and the resulting solid collected by filtration to give the title compound ($5.3 \mathrm{~g}, 63 \%$) as a yellow solid: mp $128-130{ }^{\circ} \mathrm{C} . \delta \mathrm{H} 8.12\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right), 7.74(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 6-\mathrm{H}), 7.24-7.12(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$, $5-\mathrm{H}), 6.57$ (1H, br s, 2-CHO), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$). $\delta \mathrm{c} 168.0$ (C=O), 164.5 (4-C), 150.3 (2-C), 126.2 (6-CH), 118.7 (1-C), $117.8(5-\mathrm{CH}), 107.7(3-\mathrm{CH}), 97.3(\mathrm{CHO}), 55.9\left(\mathrm{CH}_{3}\right)$. LRMS (M+H) $181.2(100 \%),(\mathrm{M}-\mathrm{H})$ 179.1 (100\%).

Dimethyl (6-methoxy-3-oxo-1,3-dihydroisobenzofuran-1-yl)phosphonate (24)

To acid $31(6.0 \mathrm{~g}, 28 \mathrm{mmol})$ in THF (150 mL) was added dimethyl phosphite ($2.9 \mathrm{~mL}, 31 \mathrm{mmol}$) dropwise followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(11.5 \mathrm{~g}, 83.3 \mathrm{mmol})$ portionwise and the resulting mixture was stirred for 18 h at room temperature, then cooled to $0^{\circ} \mathrm{C}$ and methanesulfonic acid ($6.4 \mathrm{~mL}, 97 \mathrm{mmol}$) was added dropwise. The resulting mixture was stirred for 2 h at room temperature, then solvent was removed in vacuo. The residue was partitioned between EtOAc (100 mL) and water (100 mL), the organic fraction was separated and the aqueous fraction extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and solvent was removed in vacuo to give the crude product which was purified by chromatography, eluting with $70 \% \mathrm{EtOAc} / \mathrm{X} 4$, to give the title compound ($6.8 \mathrm{~g}, 89 \%$) as a colourless semi-solid. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.84(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 4-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{dt}, J=$ $8.5,1.5 \mathrm{~Hz}, 5-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, 1-\mathrm{H}), 3.95\left(3 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{POCH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.62\left(3 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}, \mathrm{POCH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{10}$ LRMS $(\mathrm{M}+\mathrm{H})$ 273.1, (M-H) 271.1.

3-Benzylidene-5-methoxyisobenzofuran-1(3H)-one (34)

The reaction was carried out according to General Procedure D with phosphonate 24 ($0.50 \mathrm{~g}, 1.8$ $\mathrm{mmol})$, LiHMDS (2.02 mL) and benzaldehyde ($0.19 \mathrm{~mL}, 1.9 \mathrm{mmol}$). The crude product was purified by chromatography, eluting with 10% EtOAc/X4, to give the title product (0.46 g , quant.) as a colourless oil. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta \mathrm{H}\left(\mathrm{CDCl}_{3}\right) 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.51-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.03$ (1H, dd, J=8.5, 2.2 Hz , $6-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 6.86(1 \mathrm{H}, \mathrm{d}, 2.2 \mathrm{~Hz}, 4-\mathrm{H}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) . \delta \mathrm{c}\left(\mathrm{CDCl}_{3}\right) 166.7$ (C=O), 164.6 ($5-\mathrm{C}$), 146.8 ($3-\mathrm{C}$), 140.3 (3a-C), 133.4 (Ar-C), 129.5 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 129.0 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.7 (Ar$\mathrm{CH}), 127.0(7-\mathrm{CH}), 119.0(7 \mathrm{a}-\mathrm{C}), 118.5(6-\mathrm{CH}), 112.8(3-\mathrm{C}=\mathrm{CH}), 106.5(4-\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right)$. LRMS (M+H) 253.1 .

Z: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.87-7.82(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.44-7.39(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.35-7.29$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H), $7.16(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.97(3 \mathrm{H}, \mathrm{s}$, OCH_{3}). $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 167.0(\mathrm{C}=\mathrm{O}), 165.3$ (5-C), 144.8 (3-C), 143.5 (3a-C), 133.2 (Ar-C), 130.3 ($2 \times \mathrm{Ar}-$ CH), 129.0 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.6 ($\mathrm{Ar}-\mathrm{CH}$), 127.3 ($7-\mathrm{CH}$), 118.5 ($6-\mathrm{CH}$), 116.4 ($7 \mathrm{a}-\mathrm{C}$), 107.0 ($3-\mathrm{C}=\mathrm{CH}$), $102.9(4-\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right)$. $\mathrm{LRMS}(\mathrm{M}+\mathrm{H})$ 253.1. These data are in good agreement with literature values. ${ }^{1}$

3-Benzylidene-5-hydroxyisobenzofuran-1(3H)-one (36)

The reaction was carried out according to General Procedure E with benzofuranone $34(0.20 \mathrm{~g}, 0.79$ $\mathrm{mmol})$ and $\mathrm{BBr}_{3}(4.8 \mathrm{~mL}, 4.8 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with 20% EtOAc/X4, to give the title product ($0.13 \mathrm{~g}, 68 \%$) as a yellow solid. Further chromatography prepared samples of the alkene isomers for analysis.
$\mathrm{E}: \mathrm{\delta}_{\mathrm{H}} 10.82(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 7-\mathrm{CH}), 7.54-7.41\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$, $6^{\prime}-\mathrm{H}$), 7.00 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 6-\mathrm{CH}$), 6.95 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}$), 6.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, 4-\mathrm{CH}$). ठc 165.7 (1-C), 163.5 (5-C), 145.7 (3-C), 139.4 (3a-C), 132.7 ($\left.1^{\prime}-\mathrm{C}\right), 129.1$ (2'-CH, $6^{\prime}-\mathrm{CH}$), 128.8 (3'-CH, $5^{\prime}-\mathrm{CH}$), 128.4 (4'-CH), 127.1 ($7-\mathrm{CH}$), 119.4 ($6-\mathrm{CH}$), 116.0 ($7 \mathrm{a}-\mathrm{C}$), 112.4 ($3-\mathrm{C}=\mathrm{CH}$), 108.0 ($4-\mathrm{CH}$).

Z: $\delta_{\mathrm{H}} 10.97$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $7.83-7.76$ (3H, m, 7-H, 2'-H, $6^{\prime}-\mathrm{H}$), $7.48-7.43$ ($2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$), 7.37 7.33 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}$), 7.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 6-\mathrm{CH}$), 6.81 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}$). $\delta \mathrm{c} 166.0$ ($1-\mathrm{C}=\mathrm{O}$), 164.0 ($5-\mathrm{C}$), 144.2 ($3-\mathrm{C}$), 143.0 (3a-C), 133.3 ($\left.1^{\prime}-\mathrm{C}\right), 129.7$ ($2^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}$), 128.8 ($3^{\prime}-\mathrm{CH}, 5^{\prime}-\mathrm{CH}$), 128.2 (4-CH), 127.2 (7-CH), 119.0 (6-CH), 113.4 (7a-C), 106.2 (3-C=CH), 105.9 (4'-CH).

LRMS (M+H) 239.1, (M-H) 237.2.

4-Benzyl-6-hydroxyphthalazin-1(2H)-one (39)

The reaction was carried out according to General Procedure B with benzofuranone 36 ($50 \mathrm{mg}, 0.21$ mmol) and the crude product was triturated in water, then isolated by filtration to give the title product (53 mg, quant.) as a white solid: mp $218-221^{\circ} \mathrm{C} . \delta_{H} 12.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 10.69(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 8.08(1 \mathrm{H}$, d, J = 8. $7 \mathrm{~Hz}, 8-\mathrm{H}$), $7.33-7.24\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.23-7.16\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 7-\mathrm{H}\right), 7.08(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 5-\mathrm{H}), 4.18\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CCH}_{2}\right) . \delta \mathrm{c} 162.2(6-\mathrm{C}), 159.3$ (1-C=O), 144.4 (4-C), 138.2 (1'-C), 131.4 (4a-C), 128.5 (2'-C, 6'-C), 128.42 ($\left.3^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 128.39$ ($8-\mathrm{CH}$), 126.4 ($4^{\prime}-\mathrm{CH}$), 120.7 ($7-\mathrm{CH}$), 119.8 (8a-C), $109.4(5-\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 253.9872$, found 253.0971 (0.1 ppm). LRMS (M+H) 253.2, (M-H) 251.1. HPLC purity 93.8%.

3-Benzylidene-5-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (42)

The reaction was carried out according to General Procedure C with benzofuranone $36(50 \mathrm{mg}, 0.21$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(90 \mathrm{mg}, 0.63 \mathrm{mmol})$ and chloride $16(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 7 h at $50{ }^{\circ} \mathrm{C}$. The crude product was collected by extraction and triturated with 1:1 EtOAc/X4 to give the title product (33.0 $\mathrm{mg}, 37 \%$) as a yellow solid. Further chromatography prepared samples of the alkene isomers for analysis.

E: δ н 7.93 (1H, d, J = $8.6 \mathrm{~Hz}, 7-\mathrm{H}$), $7.59-7.52$ ($5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), 7.37 (1H, dd, J = 8.6, $2.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{s}, 4$ "-H), $7.06(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 7.05(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, 4-\mathrm{CH}), 5.25(2 \mathrm{H}, \mathrm{s}$, OCH_{2}), 3.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$). ठc 165.4 (1-C=O), 162.4 (5-C), 146.3 (2"-C), 145.4 (3-C), 139.0 (3a-C), 132.5 ($\left.1^{\prime}-\mathrm{C}\right), 132.3$ ($\left.5^{\prime \prime}-\mathrm{C}\right), 129.2$ ($2^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}$), $128.8\left(3^{\prime}-\mathrm{CH}, 5^{\prime}-\mathrm{CH}\right), 128.7$ ($\left.4^{\prime}-\mathrm{CH}, 4^{\prime \prime}-\mathrm{CH}\right), 127.2$ (7-CH), $118.8(6-\mathrm{CH}), 118.5(7 \mathrm{a}-\mathrm{C}), 113.3(3-\mathrm{C}=\mathrm{CH}), 107.5(4-\mathrm{CH}), 59.6\left(\mathrm{OCH}_{2}\right), 34.3\left(\mathrm{NCH}_{3}\right)$. LRMS $(\mathrm{M}+\mathrm{H})$ 378.2, $\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 237.1$.

Z: δ н $7.93-7.88\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.83-7.78\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.52-7.46$ (2H, m, $\left.3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.46$ ($1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-\mathrm{H}$), $7.40-7.34(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 6-\mathrm{H}), 6.96(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.48$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$. бс 165.8 (1-C=O), 163.2 (5-C), 146.3 (2"-C), 144.0 (3-C), 142.8 (3aC), 133.2 ($\left.1^{\prime}-\mathrm{C}\right), 132.6$ ($\left.5^{\prime \prime}-\mathrm{C}\right), 129.7$ ($2^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}$), 129.0 ($4-\mathrm{CH}$), 128.8 ($3^{\prime}-\mathrm{CH}, 5^{\prime}-\mathrm{CH}$), 128.4 ($4^{\prime \prime}-\mathrm{CH}$), $127.0(7-\mathrm{CH}), 119.3(6-\mathrm{CH}), 115.6(7 \mathrm{a}-\mathrm{C}), 106.9(3-\mathrm{C}=\mathrm{CH}), 105.1\left(4^{\prime}-\mathrm{CH}\right), 59.5\left(\mathrm{OCH}_{2}\right), 34.4\left(\mathrm{NCH}_{3}\right)$. LRMS (M+H) 378.2, ($\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$) 237.1.

4-Benzyl-6-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phthalazin-1(2H)-one (45)

The reaction was carried out according to General Procedure B with benzofuranone 42 ($32 \mathrm{mg}, 0.085$ mmol) to give the title product ($25 \mathrm{mg}, 76 \%$) as a white solid: $\mathrm{mp} 232-235^{\circ} \mathrm{C} . \delta_{H} 12.47(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $8.21(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.35-$ $7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.27\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 7.23-7.17(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.41(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2), 4.30(2 \mathrm{H}, \mathrm{s}, 4-$ CCH_{2}), $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \delta_{c} 161.4(6-\mathrm{C}), 159.5(\mathrm{C}=\mathrm{O})$, $146.8(2$ - C$)$, 145.3 (4-C), 138.6 (Ar-C), 133.2 (5 '-C), 131.6 ($4 \mathrm{a}-\mathrm{C}$), 129.2 ($4^{\prime}-\mathrm{CH}$), 129.1 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 129.0 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.9 ($8-\mathrm{CH}$), 126.9 (Ar-CH), 122.5 (8a-C), $120.7(7-\mathrm{C}), 109.5(5-\mathrm{CH}), 60.1\left(\mathrm{OCH}_{2}\right), 37.9\left(4-\mathrm{CCH}_{2}\right), 34.8\left(\mathrm{CH}_{3}\right)$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 392.1353$, found $392.1343(-2.67 \mathrm{ppm})$. LRMS ($\left.\mathrm{M}+\mathrm{H}\right) 392.2$. HPLC purity 99.8%.

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-5-methoxyisobenzofuran-1(3H)-one (48)

The reaction was carried out according to General Procedure D with phosphonate 24 ($2.5 \mathrm{~g}, 9.2 \mathrm{mmol}$), LiHMDS (10.1 mL) and aldehyde $19(2.8 \mathrm{~g}, 9.2 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with a gradient $(33 \%-40 \%)$ of EtOAc/DCM, to give the title product $(3.8 \mathrm{~g}$, 92%) as a white foam. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta_{\mathrm{H}} 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 7-\mathrm{H}), 7.72-7.63\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.47\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz} 5^{\prime}-\mathrm{H}\right), 7.24$ ($1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 6.94(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76-3.22$ (8 H , br m, 2"- $\mathrm{CH}_{2}, 3 "-\mathrm{CH}_{2}, 5 "-\mathrm{CH}_{2}, 6 "-\mathrm{CH}_{2}$), $2.06-1.87\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{CH}\right), 0.79-0.66(4 \mathrm{H}$, br m, $2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). ठс 171.3 (4"-NC=O), 165.4 (1-C=O), 164.3 (5-C), 163.6 (1"-NC=O), 157.2 (4'-C, d, JcF $=248.2 \mathrm{~Hz}), 146.1$ (3-C), 139.1 (3a-C), 132.6 ($6^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{c}-\mathrm{F}}=8.2 \mathrm{~Hz}$), 129.7 (2'-C, d, Jc-c-c-F $=4.2$ Hz), 129.5 (1'-C, d, Jc-c-c-c-f = 3.3 Hz), 127.1 ($7-\mathrm{CH}$), 124.5 (3 '-C, d, Jc-c-f = 19.1 Hz), 118.8 (6-CH), 117.8 (7a-C), $116.6\left(5{ }^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{Jc}_{\mathrm{c}-\mathrm{C}}=22.2 \mathrm{~Hz}\right), 111.2(3-\mathrm{C}=\mathrm{CH}), 106.1(4-\mathrm{C}), 55.8\left(\mathrm{OCH}_{3}\right), 10.37$ (1"'-CH), $7.11\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS $(\mathrm{M}+\mathrm{H}) 451.2,\left(\mathrm{M}-\mathrm{CH}_{3}\right) 435.1$.

Z: δ н $7.91-7.82\left(3 H, m, 7-H, 2^{\prime}-H, 6^{\prime}-H\right), 7.65(1 H, d, J=2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.45\left(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $7.24-7.18(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86-3.23\left(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \mathrm{l}-\mathrm{CH}_{2}\right.$, $3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6$ " $-\mathrm{CH}_{2}$), $2.07-1.87\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{CH}\right), 0.79-0.66\left(4 \mathrm{H}, \mathrm{br} m, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right) . \delta_{c} 171.3$ (4 "-NC=O), 165.8 (1-C=O), 165.2 ($5-C$), 163.8 ($1^{\prime \prime}-N C=O$), 156.9 (4'-C, d, Jc-F = 248.9 Hz), 144.4 (3-C), 142.8 (3a-C), 132.8 ($6^{\prime}-C, d, J_{c-c-C-F}=8.3 \mathrm{~Hz}$), 130.4 ($1^{\prime}-C, d, J_{c-c-c-c-F}=3.4 \mathrm{~Hz}$), 129.9 (2'-CH, d, Jc-c-c-ғ $=3.1 \mathrm{~Hz}), 127.2(7-\mathrm{CH}), 126.9(7-\mathrm{CH}), 124.4\left(3 '-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{F}}=18.8 \mathrm{~Hz}\right), 119.0(6-\mathrm{CH}), 114.9(7 \mathrm{a}-\mathrm{C})$,
$104.8(3-\mathrm{C}=\mathrm{CH}), 103.9(4-\mathrm{CH}), 56.3\left(\mathrm{OCH}_{3}\right), 10.38\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.13\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS $(\mathrm{M}+\mathrm{H}) 451.2,\left(\mathrm{M}-\mathrm{CH}_{3}\right) 435.1$.

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-5-hydroxyisobenzofuran-1(3H)-one (50)

The reaction was carried out according to General Procedure E with benzofuranone 48 ($0.20 \mathrm{~g}, 0.44$ $\mathrm{mmol})$ and $\mathrm{BBr}_{3}(2.7 \mathrm{~mL}, 2.7 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with 100% EtOAc to give the title product ($0.14 \mathrm{~g}, 74 \%$) as a white foam. Further chromatography prepared samples of the alkene isomers for analysis.
$E: \delta_{H} 10.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.77(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.69-7.61\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.60-7.50(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 7.46\left(1 \mathrm{H}, \mathrm{t}, J=9.1 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.02(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 6.76-$ $6.62(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.86-3.22\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 4^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 2.05-1.82\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{CH}\right)$, $0.81-0.64$ ($4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). ठc 171.3 (4"-NC=O), 165.6 (1-C=O), 163.6 (1"-NC=O), 163.4 (5C), 157.4 ($4^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{Jc}_{\mathrm{c}-\mathrm{F}}=247.7 \mathrm{~Hz}$), 146.3 (3-C), 139.4 (3a-C), 132.3 ($\left.6^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{Jc}_{\mathrm{c}-\mathrm{C}-\mathrm{c}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 129.7$ (1'-C, 2'-CH, m), 127.3 (7-CH), 124.5 ($3^{\prime}-C, J_{c-c-ғ}=18.9 \mathrm{~Hz}$), 119.4 ($6-\mathrm{CH}$), 116.6 ($5^{\prime}-\mathrm{CH}, \mathrm{J}_{\mathrm{C}-\mathrm{c}-\mathrm{F}}=22.0$ $\mathrm{Hz})$, 11.6.0 ($7 \mathrm{a}-\mathrm{C}$), $110.5(3-\mathrm{C}=\mathrm{CH})$, $108.1(4-\mathrm{CH}), 10.37\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.10\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS (M+H) 437.2 (100\%), (M-H) 435.1 (100\%).

Z: $\delta_{\mathrm{H}} 11.05(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 7.96-7.87\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.84\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,2.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.78(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}, 7-\mathrm{H}), 7.43\left(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.31(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}$, $6-\mathrm{CH}), 6.85(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.92-3.19\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 4^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}\right), 2.10-1.84(1 \mathrm{H}, \mathrm{m}$, $1^{\prime \prime \prime}-\mathrm{CH}$), $0.82-0.63$ ($4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). ठc 171.3 (4"-NC=O), 165.9 (1-C=O), 164.2 (5-C), 163.8 ($1^{\prime \prime}-\mathrm{NC}=\mathrm{O}$), 156.8 ($5^{\prime}-\mathrm{C}, ~ d, ~ J_{c-f}=248.7 \mathrm{~Hz}$), 144.5 (3-C), 142.8 (3a-C), 132.8 ($6^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{F}}=8.2$ Hz), 130.5 ($1^{\prime}-C, d, J_{c-c-c-c-F ~}=3.4 \mathrm{~Hz}$), 129.9 (2'-CH, d, Jc-C-C-F = 4.6 Hz), 127.3 ($7-\mathrm{CH}$), 124.3 (3'-CH, d, $\left.J_{C-C-F}=18.7 \mathrm{~Hz}\right), 119.2(6-\mathrm{CH}), 116.6\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, J_{c-c-F}=22.1 \mathrm{~Hz}\right), 113.3(7 \mathrm{a}-\mathrm{C}), 105.9(4-\mathrm{CH}), 104.3$ $(3-\mathrm{C}=\mathrm{CH}), 10.37\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.13\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS (M+H) $437.2(100 \%),(\mathrm{M}-\mathrm{H})$ 435.1 (100\%).

(Z)-3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-5-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (53)

The reaction was carried out according to General Procedure C with benzofuranone $50(90 \mathrm{mg}, 0.21$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol})$ and chloride $16(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 18 h at room
temperature. The crude product was collected by filtration and purified by chromatography, eluting with a gradient ($1-2 \%$) MeOH/DCM to give the title product ($45 \mathrm{mg}, 38 \%$) as a tan foam. $\delta_{H} 7.97-7.80$ ($4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-\mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), $7.52-7.42\left(2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}\right), 7.33(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{C}=\mathrm{CH}$), 5.47 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}$), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), $3.89-3.22$ ($8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6 \mathrm{6}^{\prime \prime}-$ CH_{2}), 2.12 - 1.81 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{CH}$), $0.83-0.63$ ($4 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). ठc 171.3 (4"-NC=O), 165.6 (5-C), 163.7 ($1^{\prime \prime-N C=O), ~} 163.2$ (1-C=O), 157.0 ($4^{\prime}-\mathrm{C}$, d, JC-F = 249.0 Hz), 146.4 (2"'-C), 144.4 (3-C), 142.6 (3a-
 $J_{C-C-C-F}=3.4 \mathrm{~Hz}$), 128.9 ($4^{\prime \prime \prime-C H}$), 127.1 ($7-\mathrm{CH}$), 124.4 ($3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{JC}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=18.8 \mathrm{~Hz}$), 119.3 ($6-\mathrm{CH}$), 116.7 ($5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{Jc-c-F}=22.0 \mathrm{~Hz}$), 115.6 (7a-C), $105.3(4-\mathrm{CH}), 105.0(3-\mathrm{C}=\mathrm{CH}), 59.9\left(\mathrm{OCH}_{2}\right), 34.4\left(\mathrm{NCH}_{3}\right)$, 10.4 (1"'-CH), $7.13\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), ~, 4 \times \mathrm{CH}_{2}$ not observed. LRMS (M+H) $576.1(8 \%),\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ 435.0 (80%).
(E)-3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-5-((1-methyl-5-nitro-1 H -imidazol-2-yl)methoxy)isobenzofuran-1(3H)-one (55)

The reaction was carried out according to General Procedure C with benzofuranone 50 ($90 \mathrm{mg}, 0.21$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol})$ and chloride $17(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 18 h at room temperature. The crude product was collected by filtration and purified by chromatography, eluting with a gradient ($1-2 \%$) of MeOH/DCM to give the title product ($34 \mathrm{mg}, 28 \%$) as a yellow gum. $\delta \mathrm{H} 8.01(1 \mathrm{H}$, s, $\left.4^{\prime \prime \prime \prime}-\mathrm{H}\right), 7.91$ ($1 \mathrm{H}, \mathrm{d}, ~ J=8.6 \mathrm{~Hz}, 7-\mathrm{CH}$), 7.71 - 7.63 ($2 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{CH}, 2^{\prime}-\mathrm{CH}$), 7.46 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{CH}\right), 7.35(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 6-\mathrm{CH}), 7.17(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, 4-\mathrm{CH}), 7.02(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.36$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.88-3.26\left(8 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime}-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6^{\prime \prime}-\mathrm{CH}_{2}\right), 2.07-1.85$ (1H, br m, 1"-CH), 0.79 - 0.65 (4H, br m, 2"'-CH2, 3"-CH2). סc 171.9 (4"-C=O), 165.8 (1-C=O), 164.2 ($5-$
 C), 133.0 ($6^{\prime}-\mathrm{CH}, \mathrm{d}$, Jc-c-c-- $=8.6 \mathrm{~Hz}$), 131.9 ($4^{\prime \prime \prime}-\mathrm{CH}$), 130.3 (2'-CH, m), 129.9 ($1^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{Jc-c-c-c-F}=3.5$ Hz), 127.6 ($7-\mathrm{CH}$), 124.8 ($3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=19.0 \mathrm{~Hz}$), 119.9 ($6-\mathrm{CH}$), 119.0 ($7 \mathrm{a}-\mathrm{C}$), 117.2 ($5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{Jc}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}$ $=21.8 \mathrm{~Hz}), 112.0(3-\mathrm{C}=\mathrm{CH}), 107.9(4-\mathrm{CH}), 62.8\left(\mathrm{OCH}_{2}\right), 34.0\left(\mathrm{NCH}_{3}\right), 10.8\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 7.60\left(2^{\prime \prime \prime}-\mathrm{CH}_{2}\right.$, $\left.3^{\prime \prime \prime}-\mathrm{CH}_{2}\right), 4 \times \mathrm{CH}_{2}$ not observed. LRMS (M+H) $576.2(20 \%),\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 435.2(100 \%)$.

6-Methoxyisobenzofuran-1(3H)-one (30)

To 3-methoxybenzoic acid ($10 \mathrm{~g}, 64 \mathrm{mmol}$) in $\mathrm{AcOH}(33 \mathrm{~mL})$ was added conc. $\mathrm{HCl}(48 \mathrm{~mL})$ and formaldehyde (19.2 mL) and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h . The reaction was cooled
to room temperature, neutralised with saturated NaHCO_{3} and solvent was removed in vacuo. The crude residue was dissolved in boiling X 4 , residual solid filtered off and the mother liquor was evaporated to give the title compound ($6.8 \mathrm{~g}, 64 \%$) as a white solid: $\mathrm{mp} 97-100^{\circ} \mathrm{C}$ (lit. $107.6^{\circ} \mathrm{C}^{11}$). $\delta_{H} 7.56(1 \mathrm{H}$, dd, $J=8.4,0.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{dd}, 8.4,2.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, 7-\mathrm{H}), 5.34,\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{11} \mathrm{LRMS}(\mathrm{M}+\mathrm{H})$ 165.2.

2-Formyl-5-methoxybenzoic acid (32)

To benzofuranone 30 ($8.6 \mathrm{~g}, 54 \mathrm{mmol}$) in chlorobenzene (170 mL) was added N-bromosuccinimide (9.8 $\mathrm{g}, 55 \mathrm{mmol})$ and the resulting mixture was heated to $85^{\circ} \mathrm{C}$. Azobisisobutyronitrile ($0.086 \mathrm{~g}, 0.52 \mathrm{mmol}$) was suspended in chlorobenzene (10 mL) and 2 mL of this suspension was added to the reaction mixture, followed by the remainder after the resulting exotherm subsided. The mixture was stirred for 2 h at $85^{\circ} \mathrm{C}$, cooled to $0^{\circ} \mathrm{C}$ and filtered to remove insoluble material, washing the filter cake with chlorobenzene (10 ml). The mother liquor was evaporated in vacuo, and the residue partitioned between $2 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and $\mathrm{DCM}(50 \mathrm{~mL})$. The organic fraction was collected, and the aqueous fraction washed with DCM ($2 \times 50 \mathrm{~mL}$). The aqueous residue was acidified with conc. HCl , extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{X} 4$, and the resulting solid recrystallised from EtOAc to give pure product ($3.4 \mathrm{~g}, 36 \%$) as a white solid: mp $131-133^{\circ} \mathrm{C}$ (lit. ${ }^{11} 166.2^{\circ} \mathrm{C}$). $\delta \mathrm{H} 8.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $7.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.39-7.35(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 6-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. These data are in good agreement with literature values. ${ }^{11}$ LRMS (M-H) 179.2 (100\%).

Dimethyl (5-methoxy-3-oxo-1,3-dihydroisobenzofuran-1-yl)phosphonate (25)

To acid $32(3.3 \mathrm{~g}, 18 \mathrm{mmol})$ in THF (100 mL) was added dimethyl phosphite ($1.9 \mathrm{~mL}, 20 \mathrm{mmol}$), followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(3.8 \mathrm{~g}, 28 \mathrm{mmol})$ portionwise and the resulting mixture was stirred at room temperature for 48 h . A further portion of $\mathrm{K}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g}, 18 \mathrm{mmol})$ was added and the mixture stirred a further 24 hours, cooled to $0{ }^{\circ} \mathrm{C}$ and methanesulfonic acid ($3.9 \mathrm{~mL}, 60 \mathrm{mmol}$) was added. The mixture was stirred for 1 h at room temperature, then solvent was removed in vacuo. The residue was partitioned between EtOAc $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, the organic layer was separated, and the aqueous residue was extracted with EtOAc ($6 \times 200 \mathrm{~mL}$). The organic fractions were combined, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and solvent was removed in vacuo. The crude product was purified by chromatography, eluting with 70\% EtOAc/X4 to give the title compound ($2.3 \mathrm{~g}, 46 \%$) as a yellow oil that solidified on standing: mp $75-77^{\circ} \mathrm{C} . \delta_{\mu}\left(\mathrm{CDCl}_{3}\right)$
$7.64(1 \mathrm{H}, \mathrm{dt}, J=8.5,0.8 \mathrm{~Hz}, 7-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 6-\mathrm{H})$, $5.66(1 \mathrm{H}, \mathrm{dd}, J=9.9,0.6 \mathrm{~Hz}, 1-\mathrm{CH}), 3.92\left(3 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)\right) 3.89\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.61(3 \mathrm{H}, \mathrm{d}$, $\left.J=10.6 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)\right) . \delta_{c}\left(\mathrm{CDCl}_{3}\right) 169.9\left(3-\mathrm{C}=\mathrm{O}, J_{c-o-p}=2.3 \mathrm{~Hz}\right), 161.5\left(5-\mathrm{C}, \mathrm{Jc}_{\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{P}}=2.2 \mathrm{~Hz}\right)$,
 CH, Jc-c-c-c-p $=2.8 \mathrm{~Hz}), 108.1\left(4-\mathrm{CH}, J_{c-c-c-c-p}=1.3 \mathrm{~Hz}\right), 75.2\left(1-\mathrm{CH}, J_{c-p}=166.2 \mathrm{~Hz}\right), 56.1\left(5-\mathrm{COCH}_{3}\right)$, $54.8\left(\mathrm{POCH}_{3}, J_{\mathrm{c}-\mathrm{O}-\mathrm{P}}=6.9 \mathrm{~Hz}\right), 54.4\left(\mathrm{POCH}_{3}, J_{\mathrm{c}-\mathrm{O}-\mathrm{P}}=7.2 \mathrm{~Hz}\right) . \operatorname{LRMS}(\mathrm{M}+\mathrm{H}) 273.1(100 \%),(\mathrm{M}-\mathrm{H}) 271.1$ (100\%).

3-Benzylidene-6-methoxyisobenzofuran-1(3H)-one (35)

The reaction was carried out according to General Procedure D with phosphonate 25 ($0.50 \mathrm{~g}, 1.8$ $\mathrm{mmol})$, LiHMDS $(2.0 \mathrm{~mL})$ and benzaldehyde $(0.19 \mathrm{~mL}, 1.9 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with $10 \% \mathrm{EtOAc} / \mathrm{X} 4$ to give the title product $(0.45 \mathrm{~g}, 98 \%)$ as a white solid. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta_{\mathrm{H}} 7.55-7.39(7 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 7-\mathrm{H}, 4 \times \mathrm{Ar}-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 5-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH})$, $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) . \delta \mathrm{c} 165.8$ (C=O), 161.4 (6-C), 145.7 (3-C), 132.8 (Ar-C), 129.7 (3a-C), 129.1 (2× $\mathrm{Ar}-\mathrm{CH}), 128.9(2 \times \mathrm{Ar}-\mathrm{CH}), 128.3(\mathrm{Ar}-\mathrm{CH}), 127.2(7 \mathrm{a}-\mathrm{C}), 123.7(4-\mathrm{CH}), 123.3(5-\mathrm{CH}), 110.8(3-\mathrm{C}=\mathrm{CH})$, $107.5(7-\mathrm{CH}), 56.0\left(\mathrm{OCH}_{3}\right)$. LRMS $(\mathrm{M}+\mathrm{H}) 253.1$.

Z: $\delta \mathrm{H} 8.03(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz} 4-\mathrm{H}), 7.80-7.75(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ar}-\mathrm{H}), 7.49-7.40(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 4-\mathrm{H}, 2 \times \mathrm{Ar}-$ H), $7.33(1 \mathrm{H}, \mathrm{dddd}, J=7.4,6.8,1.2,1.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.80(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) . \delta c 166.3$ ($\mathrm{C}=\mathrm{O}$), 161.2 (6-C), 144.2 (3-C), 133.5 (Ar-C), 133.0 (3a-C), 129.5 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.8 (2 $\times \mathrm{Ar}-\mathrm{CH}$), $128.0(\mathrm{Ar}-\mathrm{CH}), 124.1(7 \mathrm{a}-\mathrm{C}), 124.0(5-\mathrm{CH}), 122.2(4-\mathrm{CH}), 107.1(7-\mathrm{CH}), 105.3(3-\mathrm{C}=\mathrm{CH}), 56.0\left(\mathrm{OCH}_{3}\right)$. LRMS (M+H) 253.1.

(Z)-3-Benzylidene-6-hydroxyisobenzofuran-1(3H)-one (37)

The reaction was carried out according to General Procedure E with benzofuranone 35 ($0.38 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ and $\mathrm{BBr}_{3}(9.0 \mathrm{~mL}, 9.0 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{X} 4$, to give the title product $(0.35 \mathrm{~g}, 97 \%)$ as a yellow solid: mp $205-208{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.83-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.43-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.34-7.27(2 \mathrm{H}, \mathrm{m}$, Ar-H), $7.26-7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,2.3 \mathrm{~Hz}, 5-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.84(1 \mathrm{H}, \mathrm{br}$ s, OH$) . \delta_{\mathrm{H}} 10.54$ (1H, br s, OH), $7.94(1 \mathrm{H}, \mathrm{dd}, J=8.5,0.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.76\left(2 \mathrm{H}, \mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.47-7.42$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.34-7.30\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 7.28(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{dd}, J=2.2$,
$0.4 \mathrm{~Hz}, 7-\mathrm{H}) .6 .70$ (1H, s, 3-C=CH). ठс 166.4 (1-C=O), 159.7 (7a-C), 144.5 (3-C), 133.6 (1'-C), 131.4 (3a-C), 129.6 ($2^{\prime}-\mathrm{CH}, 6^{\prime}-\mathrm{CH}$), 128.8 ($3^{\prime}-\mathrm{CH}, 5^{\prime}-\mathrm{CH}$), 127.7 (4 '-CH), 124.6 ($\left.6-\mathrm{C}\right), 123.8(5-\mathrm{CH}), 122.4$ (4$\mathrm{CH})$, $109.4(7-\mathrm{CH}), 104.3(3-\mathrm{C}=\mathrm{CH})$. LRMS $(\mathrm{M}+\mathrm{H}) 239.2,(\mathrm{M}-\mathrm{H}) 237.1$.

4-Benzyl-7-hydroxyphthalazin-1(2H)-one (40)

The reaction was carried out according to General Procedure B with benzofuranone 33 ($50 \mathrm{mg}, 0.21$ mmol) and the crude product was triturated in water, then isolated by filtration to give the title product ($47 \mathrm{mg}, 89 \%$) as a white solid: $\mathrm{mp} 303-306{ }^{\circ} \mathrm{C} . \delta н 12.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 10.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.79(1 \mathrm{H}$, d, $J=8.9 \mathrm{~Hz}, 5-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, 8-\mathrm{H}), 7.31-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.6$ Hz, 6-H), 7.21 - 7.15 (1H, m, Ar-H), 4.20 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$). ठc 160.2 (7-C), 159.3 (C=O), 145.0 (4-C), 138.5 (Ar-C), 130.0 (8a-C), 128.5 ($4 \times \mathrm{Ar}-\mathrm{CH}$), 128.0 (5-CH), 126.3 (Ar-CH), 122.4 (6-CH), 121.8 (4a-CH), 109.6 (8-CH), $37.6\left(\mathrm{CH}_{2}\right)$. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 253.0972$, found 253.0964 (-3.10 ppm). HPLC purity 97.9\%
(Z)-3-Benzylidene-6-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (43)

The reaction was carried out according to General Procedure C with benzofuranone 33 ($50 \mathrm{mg}, 0.21$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(90 \mathrm{mg}, 0.63 \mathrm{mmol})$ and chloride $16(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 7 h at $50^{\circ} \mathrm{C}$. The crude product was collected by filtration and triturated with EtOAc to give the title product ($40 \mathrm{mg}, 44 \%$) as a yellow solid: mp $266-269^{\circ} \mathrm{C} . \delta н 8.08(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.79(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.67$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{s}$, $\left.4^{\prime}-\mathrm{H}\right), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) . \delta \mathrm{c} 166.2$ (C=O), 159.3 (6-C), 146.3 (2'-CH), 144.1 (3-C), 133.8 (3a-C), 133.4 (Ar-C), 132.9 (5'-C), 129.5 ($2 \times \mathrm{Ar}-$ $\mathrm{CH}), 128.9(2 \times \mathrm{Ar}-\mathrm{CH}), 128.6\left(4^{\prime}-\mathrm{CH}\right), 128.1(\mathrm{Ar}-\mathrm{CH}), 124.6(5-\mathrm{CH}), 124.0(7 \mathrm{a}-\mathrm{C}), 122.4(4-\mathrm{CH}), 108.7$ $(7-\mathrm{CH}), 105.7(3-\mathrm{C}=\mathrm{CH}), 60.0\left(\mathrm{OCH}_{2}\right), 34.4\left(\mathrm{NCH}_{3}\right) . \operatorname{LRMS}(\mathrm{M}+\mathrm{H}) 378.2$.

4-Benzyl-7-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)phthalazin-1(2H)-one (46)

The reaction was carried out according to General Procedure B with benzofuranone 43 ($38 \mathrm{mg}, 0.10$ mmol) to give the title product ($26 \mathrm{mg}, 67 \%$) as a white solid: mp $227-230^{\circ} \mathrm{C} . \delta_{\mathrm{H}} 12.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $7.90(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, 8-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.35$ (1H, s, 4'-H), $7.32-7.25(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.22-7.16(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 4.27\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$). ठс 160.0 (7-C), 159.7 (C=O), 146.8 (2'-C), 145.4 (4-C), 138.8 (Ar-C), 133.4 (5'-C), 130.4 (8a-C), 129.2 (4 '-CH), 129.0 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.9 ($2 \times \mathrm{Ar}-\mathrm{CH}$), 128.5 (5-CH), 126.9 ($\mathrm{Ar}-\mathrm{CH}$), 124.2 (4a-C), $123.2(6-\mathrm{CH})$, $108.8(8-\mathrm{CH}), 60.1\left(\mathrm{OCH}_{2}\right), 38.1\left(4-\mathrm{CCH}_{2}\right), 34.8\left(\mathrm{CH}_{3}\right)$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) \mathrm{m} / \mathrm{z} 392.1353$, found 392.1342 (-3.00 ppm). HPLC purity 98.4%

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-6-methoxyisobenzofuran-1(3H)-one (49)

The reaction was carried out according to General Procedure D with phosphonate 25 ($0.40 \mathrm{~g}, 1.5$ $\mathrm{mmol})$, LiHMDS (1.62 mL) and aldehyde $19(0.45 \mathrm{~g}, 1.5 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with $70 \% \mathrm{EtOAc} / \mathrm{X} 4$ to give the title product $(0.60 \mathrm{~g}, 91 \%)$ as a white foam. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta_{H} 7.69-7.63\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.60-7.55\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.49-7.37\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}\right), 7.30(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.89(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81-3.27\left(8 \mathrm{H}, \mathrm{br} \mathrm{m}, 2 \mathrm{l}-\mathrm{CH}_{2}, 3\right.$ "-CH2, $5 "-\mathrm{CH}_{2}, 6 "-\mathrm{CH}_{2}$), $2.05-1.89\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{CH}\right), 0.78-0.67\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right) . \delta c 171.3$ (4"-NC=O), 165.7 (1-C=O), 163.6 (1"-NC=O), 161.6 (6-C), 157.3 (4'-C, d, J=247.8), 146.3 (3-C), 132.3 ($6^{\prime}-\mathrm{CH}, \mathrm{d}, J=8.3 \mathrm{~Hz}$), 129.9 ($1^{\prime}-\mathrm{C}, \mathrm{d}, J=3.5 \mathrm{~Hz}$), 129.7 ($2 '-\mathrm{CH}, \mathrm{d}, J=4.2 \mathrm{~Hz}$), 129.4 ($3 \mathrm{a}-\mathrm{C}$), 127.3 (7a-C), $124.5\left(3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}=19.4 \mathrm{~Hz}\right), 123.8(5-\mathrm{CH}), 123.3(4-\mathrm{CH}), 116.7\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}=22.5 \mathrm{~Hz}\right), 109.0$ $(3-\mathrm{C}=\mathrm{CH}), 107.6(7-\mathrm{CH}), 56.1\left(\mathrm{OCH}_{3}\right), 10.4\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.2\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS (M+H) 451.2 (100\%)

Z: δ н $7.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.90-7.84\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.48$ ($1 \mathrm{H}, \mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.46-7.39\left(2 \mathrm{H}, \mathrm{m}, 5{ }^{\prime}-\mathrm{H}, 7-\mathrm{H}\right), 6.84(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.86-3.22\left(8 \mathrm{H}\right.$, br m, 2"-CH2, 3"-CH2, 5"-CH2, 6"-CH2), $2.09-1.85\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{CH}\right), 0.82-0.67(4 \mathrm{H}$, m, $2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). ठс 171.3 (4"-NC=O), 166.1 (1-C=O), 163.8 (1"-NC=O), 161.4 (6-C), 156.8 (4'-C, d, $J=248.3 \mathrm{~Hz}), 144.5(3-\mathrm{C}), 132.8(3 \mathrm{a}-\mathrm{C}), 132.5\left(6^{\prime}-\mathrm{CH}, \mathrm{d}, J=8.2 \mathrm{~Hz}\right), 130.7\left(1^{\prime}-\mathrm{C}, \mathrm{d}, J=3.5 \mathrm{~Hz}\right), 129.7$ (2 '-CH, d, $J=2.9 \mathrm{~Hz}$), 124.3 ($3^{\prime}-\mathrm{C}, \mathrm{d}, ~ J=18.9 \mathrm{~Hz}$), 124.2 ($7 \mathrm{a}-\mathrm{C}$), 124.1 ($5-\mathrm{CH}$), 122.2 ($4-\mathrm{CH}$), 116.6 ($5^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}=23.3 \mathrm{~Hz}$), $107.3(7-\mathrm{CH}), 103.3(3-\mathrm{C}=\mathrm{CH}), 56.1\left(\mathrm{OCH}_{3}\right), 10.4\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 7.1\left(2 \times \mathrm{CH}_{2}\right), 4 \times$ NCH_{2} not observed. LRMS (M+H) 451.2 (100\%)

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-6-hydroxyisobenzofuran-1(3H)-one (51)

The reaction was carried out according to General Procedure E with benzofuranone 49 ($0.20 \mathrm{~g}, 0.44$ $\mathrm{mmol})$ and $\mathrm{BBr}_{3}(2.66 \mathrm{~mL}, 2.66 \mathrm{mmol})$. The crude product was purified by chromatography, eluting with 100% EtOAc to give the title product ($0.14 \mathrm{~g}, 74 \%$) as a yellow foam. Further chromatography prepared samples of the alkene isomers for analysis.

E: $\delta_{\mathrm{H}} 10.67(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.72-7.66\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.64-7.56\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.35 \mathrm{~Hz}, 4-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 6.86$ ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}$), $3.86-3.30\left(8 \mathrm{H}, \mathrm{br}\right.$ m, $2^{\prime \prime}-\mathrm{CH}_{2}, 3$ " $-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6$ " $-\mathrm{CH}_{2}$), $2.10-1.91$ ($1 \mathrm{H}, \mathrm{br}$ m, $1^{\prime \prime \prime}-\mathrm{CH}$), $0.82-0.71\left(4 \mathrm{H}, \mathrm{m}, 2^{2 \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right) . \delta c 171.3$ (4"-NC=O), 165.9 (1-C=O), 163.6 (1"-NC=O), 160.1 (6-C), 157.1 (4 '-CH, d, JC-F $=247.1 \mathrm{~Hz}$), 146.5 (3-C), 132.2 ($6^{\prime}-\mathrm{CH}, \mathrm{d}, J_{C-C-F}=8.5 \mathrm{~Hz}$), 130.0 (1'-C, d, Jc-c-c-c-F $=3.1 \mathrm{~Hz}), 129.6\left(2^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{c}-\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 127.8(3 \mathrm{a}-\mathrm{C}), 127.3(7 \mathrm{a}-\mathrm{C}), 124.5\left(3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{C}-\mathrm{F}}=19.2\right.$ $\mathrm{Hz}), 124.1(4-\mathrm{CH}), 123.2(5-\mathrm{CH}), 116.6\left(5 \mathrm{C}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 109.8(7-\mathrm{CH}), 108.0(3-\mathrm{C}=\mathrm{CH})$, $10.38\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 7.12\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS $(\mathrm{M}+\mathrm{H}) 437.2(100 \%),(\mathrm{M}-\mathrm{H}) 435.1(100 \%)$.

Z: $\delta_{\mathrm{H}} 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 4-\mathrm{H}), 7.89-7.83\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.82-7.77(1 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}\right), 7.42\left(1 \mathrm{H}, \mathrm{t}, J=9.1 \mathrm{~Hz}, 5{ }^{\prime}-\mathrm{H}\right), 7.30(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, 7-\mathrm{H})$, 6.76 (1H, s, 3-C=CH), $3.86-3.24$ ($8 \mathrm{H}, \mathrm{br}$ m, 2"- $\mathrm{CH}_{2}, 3$ "- $\mathrm{CH}_{2}, 5$ " $-\mathrm{CH}_{2}, 6$ 6"-CH2), 2.11 - 1.88 (1H, br, m, $1{ }^{\prime \prime \prime}-\mathrm{CH}$), $0.82-0.67$ ($4 \mathrm{H}, \mathrm{br}$ m, $2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}$). $\delta_{c} 171.3$ (4"-NC=O), 166.2 (1-C=O), 163.9 (1"-NC=O), 159.9 (6-C), 156.7 (4'-C, d, Jc-F $=249.5 \mathrm{~Hz}$), 144.8 (3-C), 132.4 ($6{ }^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{c}-\mathrm{F}}=8.2 \mathrm{~Hz}$), 131.1 (3a-C), 130.8 (1'-C, d, Jc-c-c-c-f $=3.2 \mathrm{~Hz}$), 129.5 ($2^{\prime}-\mathrm{CH}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}$), 124.3 ($3^{\prime}-\mathrm{C}, \mathrm{d}, \mathrm{J}_{\mathrm{c}-\mathrm{c}-\mathrm{F}}=18.1$ $\mathrm{Hz}), 124.2$ ($7 \mathrm{a}-\mathrm{C}$), 123.9 ($5-\mathrm{CH}$), $122.4(4-\mathrm{CH}), 116.6$ (5 --CH, d, Jc-c-ғ $=21.8 \mathrm{~Hz}$), 109.5 ($7-\mathrm{CH}$), 102.4 $(3-\mathrm{C}=\mathrm{CH}), 10.37\left(1^{\prime \prime \prime}-\mathrm{CH}\right), 7.14\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS (M+H) $437.2(100 \%),(\mathrm{M}-\mathrm{H})$ 435.1 (100\%).

(Z)-3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-6-((1-methyl-2-nitro-1H-imidazol-5-yl)methoxy)isobenzofuran-1(3H)-one (54)

The reaction was carried out according to General Procedure C with benzofuranone 51 ($90 \mathrm{mg}, 0.21$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol})$ and chloride $16(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 18 h at room temperature. The crude product was collected by filtration and triturated with MeOH to give the title product ($60 \mathrm{mg}, 50 \%$) as a cream solid: $\mathrm{mp} 234-237^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}} 8.04(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.91-7.85\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.85-7.80\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 7.68(1 \mathrm{H}, \mathrm{d}, J=$ $2.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 5-\mathrm{H}), 7.44\left(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.37\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime \prime}-\mathrm{H}\right), 6.88$ $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.87-3.24\left(8 \mathrm{H}, \mathrm{br}\right.$ m, 2"- $\mathrm{CH}_{2}, 3$ "- $\mathrm{CH}_{2}, 5$ "-CH2, $6 "-\mathrm{CH}_{2}$), $2.09-1.86\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{CH}\right), 0.81-0.67\left(4 \mathrm{H}, \mathrm{br}\right.$ m, $\left.2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{3 \prime \prime}-\mathrm{CH}_{2}\right) . \delta_{c} 171.3$ (4"-NC=O), 166.0 (1 "-NC=O), 163.8 (1-C=O), 159.5 (6-C), 156.8 ($4^{\prime}-\mathrm{C}, \mathrm{d}, J_{c-F}=248.6 \mathrm{~Hz}$), 146.3 ($\left.2^{\prime \prime \prime \prime}-\mathrm{C}\right), 144.4$ (3-

 (7a-C), $122.4(4-C H), 116.3\left(5^{\prime}-C H, d, J_{c-c-F}=22.3 \mathrm{~Hz}\right), 108.9(7-\mathrm{CH}), 103.7(3-\mathrm{C}=\mathrm{CH}), 60.0\left(\mathrm{OCH}_{2}\right)$, $34.4\left(\mathrm{NCH}_{3}\right), 10.37\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.13\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS (M+H)576.2(24\%),(M$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$) 435.2 (100\%)

3-(3-(4-(Cyclopropanecarbonyl)piperazine-1-carbonyl)-4-fluorobenzylidene)-6-((1-methyl-5-nitro-1H-imidazol-2-yl)methoxy)isobenzofuran-1(3H)-one (56)

The reaction was carried out according to General Procedure C with benzofuranone 51 ($90 \mathrm{mg}, 0.21$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.32 \mathrm{mmol})$ and chloride $17(40 \mathrm{mg}, 0.23 \mathrm{mmol})$ stirring for 18 h at room temperature. The crude product was collected by filtration and triturated with MeOH to give the title product ($50 \mathrm{mg}, 42 \%$) as a white foam. Further chromatography prepared samples of the alkene isomers for analysis

E: $\delta \mathrm{H} 8.09\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime \prime}-\mathrm{H}\right), 7.71-7.63\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.61-7.53(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 7.42-7.37\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.93(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, $3.84-3.39\left(8 \mathrm{H}\right.$, br m, 2"-CH2, 3"-CH2, 5"-CH2, 6"-CH2), $2.05-1.87\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 0.79-0.66(4 \mathrm{H}$, br m, 2"'-CH2, 3"'-CH2). ${ }^{\prime \prime} 171.3$ (4"-NC=O), 165.6 (1-C=O), 163.6 (1"-NC=O), 159.7 (6-C), 157.2 (4'-C, d, $J_{C-F}=248.0 \mathrm{~Hz}$), 147.2 ($\left.2^{\prime \prime \prime \prime}-C\right), 146.1(3-C), 139.7\left(5^{\prime \prime \prime \prime}-C\right), 132.3\left(6^{\prime}-C H, d, J_{C-C-C-F}=8.2 \mathrm{~Hz}\right), 131.5$ ($4^{\prime \prime \prime \prime}-\mathrm{CH}$), 130.3 (3a-C) 129.8 ($1^{\prime}-\mathrm{C}$, d, Jc-c-c-c-F $=3.2 \mathrm{~Hz}$), 129.7 ($5-\mathrm{CH}$), 127.1 ($7 \mathrm{a}-\mathrm{C}$), 124.5 ($3^{\prime}-\mathrm{C}, \mathrm{d}$, $\left.J_{C-C-F}=18.1 \mathrm{~Hz}\right), 124.0(4-C H), 123.9\left(2^{\prime}-C, d, J_{C-C-C-F}=6.6 \mathrm{~Hz}\right), 116.7\left(5^{\prime}-\mathrm{C}, \mathrm{d}, J_{C-C-F}=23.0 \mathrm{~Hz}\right), 109.5$ $(3-\mathrm{C}=\mathrm{CH}), 109.2(7-\mathrm{CH}), 62.6\left(\mathrm{OCH}_{2}\right), 33.6\left(\mathrm{NCH}_{3}\right), 10.4\left(1{ }^{\prime \prime}-\mathrm{CH}\right), 7.12\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS ($\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}$) 435.1 (100\%).

Z: δ н $8.11\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime \prime \prime \prime}-\mathrm{H}\right), 8.03(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.91-7.85\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 7.82(1 \mathrm{H}, \mathrm{dd}, J=6.4$, $\left.1.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 7.69(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, 7-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{t}, J=9.1 \mathrm{~Hz}$, $\left.5^{\prime}-\mathrm{H}\right), 6.88(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{C}=\mathrm{CH}), 5.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.86-3.24(8 \mathrm{H}, \mathrm{br}$ m, 2"-CH2, $\left.3 "-\mathrm{CH}_{2}, 5^{\prime \prime}-\mathrm{CH}_{2}, 6 "-\mathrm{CH}_{2}\right), 2.08-1.86\left(1 \mathrm{H}\right.$, br m, $\left.1^{\prime \prime \prime}-\mathrm{H}\right), 0.79-0.67\left(4 \mathrm{H}\right.$, br m, $\left.2^{\prime \prime \prime}-\mathrm{CH}_{2}, 3^{\prime \prime \prime}-\mathrm{CH}_{2}\right) . \delta c 171.3$
 144.4 (3-C), 139.7 ($\left.5^{\prime \prime \prime \prime}-C\right), 133.6$ (3a-C), 132.6 ($6^{\prime}-C$, d, Jc-c-c-ғ $=8.5 \mathrm{~Hz}$), 131.5 ($4^{\prime \prime \prime \prime}-\mathrm{CH}$), 130.5 ($1^{\prime}-\mathrm{C}$, d, Jc-c-c-c-F $=2.9 \mathrm{~Hz}$), 129.7 (2'-C, d, Jc-C-C-F $=3.7 \mathrm{~Hz}$), 127.1 ($7 \mathrm{a}-\mathrm{C}$), 124.6 ($5-\mathrm{CH}$), 124.3 ($3^{\prime}-\mathrm{C}, \mathrm{d}$, Jc-c$\mathrm{F}=19.4 \mathrm{~Hz}), 122.3(4-\mathrm{CH}), 116.6\left(5^{\prime}-\mathrm{CH}, \mathrm{d}, J_{\mathrm{C}-\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 108.9(7-\mathrm{CH}), 103.7(3-\mathrm{C}=\mathrm{CH}), 62.7$
$\left(\mathrm{OCH}_{2}\right), 33.6\left(\mathrm{NCH}_{3}\right), 10.4\left(1{ }^{\prime \prime \prime}-\mathrm{CH}\right), 7.13\left(2 \times \mathrm{CH}_{2}\right), 4 \times \mathrm{NCH}_{2}$ not observed. LRMS $\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right) 435.1$ (100\%).

References

1 M. Miura, T. Tsuda, T. Satoh, S. Pivsa-Art and M. Nomura, J. Org. Chem., 1998, 63, 52115215.

2 I. Parveen, D. P. Naughton, W. J. D. Whish and M. D. Threadgill, Bioorg. Med. Chem. Lett., 1999, 9, 2031-2036.
3 C. A. Valdez, J. C. Tripp, Y. Miyamoto, J. Kalisiak, P. Hruz, Y. S. Andersen, S. E. Brown, K. Kangas, L. V. Arzu, B. J. Davids, F. D. Gillin, J. A. Upcroft, P. Upcroft, V. V. Fokin, D. K. Smith, K. B. Sharpless and L. Eckmann, J. Med. Chem., 2009, 52, 4038-4053.

4 A. T. O. M. Adebayo, W. R. Bowman and W. G. Salt, J. Chem. Soc. Perkin 1, 1987, 28192827.
$5 \quad$ US2010035883 (A1), 2010.
6 C. Kesenheimer, A. Kalogerakis, A. Meißner and U. Groth, Chem. - Eur. J., 2010, 16, 88058821.

7 G. Papageorgiou and J. E. T. Corrie, Tetrahedron, 1999, 55, 237-254.
8 A. J. Woodhead, H. Angove, M. G. Carr, G. Chessari, M. Congreve, J. E. Coyle, J. Cosme, B. Graham, P. J. Day, R. Downham, L. Fazal, R. Feltell, E. Figueroa, M. Frederickson, J. Lewis, R. McMenamin, C. W. Murray, M. A. O'Brien, L. Parra, S. Patel, T. Phillips, D. C. Rees, S. Rich, D.-M. Smith, G. Trewartha, M. Vinkovic, B. Williams and A. J.-A. Woolford, J. Med. Chem., 2010, 53, 5956-5969.
9 F. A. Davis and Y. W. Andemichael, J. Org. Chem., 1999, 64, 8627-8634.
10 M. Watanabe, S. Ijichi and S. Furukawa, Synthesis, 1993, 1993, 94-98.
11 S. C. Koeberle, S. Fischer, D. Schollmeyer, V. Schattel, C. Grütter, D. Rauh and S. A. Laufer, J. Med. Chem., 2012, 55, 5868-5877.
${ }^{1}$ H NMR Compound 4

${ }^{13} \mathrm{C}$ NMR (APT) Compound 4

${ }^{13} \mathrm{C}$ NMR (APT) Compound 5

${ }^{13} \mathrm{C}$ NMR (APT) Compound 6

${ }^{13} \mathrm{C}$ NMR (APT) Compound 7

${ }^{13} \mathrm{C}$ NMR (APT) Compound 8

${ }^{13} \mathrm{C}$ NMR (APT) Compound 9

${ }^{13} \mathrm{C}$ NMR (APT) Compound 10

${ }^{13} \mathrm{C}$ NMR (APT) Compound 11

${ }^{13} \mathrm{C}$ NMR (APT) Compound 18

${ }^{13} \mathrm{C}$ NMR (APT) Compound 38

${ }^{13} \mathrm{C}$ NMR (APT) Compound 39

${ }^{1} \mathrm{H}$ NMR Compound 40

${ }^{13} \mathrm{C}$ NMR (APT) Compound 40

${ }^{13} \mathrm{C}$ NMR Compound 44

${ }^{13} \mathrm{C}$ NMR (APT) Compound 45

${ }^{13} \mathrm{C}$ NMR (APT) Compound 46

HPLC Compound 4

Signal 1: DAD1 A, Sig=330, 200 Ref=550,50

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	7.727	BB	0.1875	11.75733	1.72611	0.2805	1	9.345	MM	0.8761	1.87078	$2.34443 \mathrm{e}-1$	0.8115
2	9.345	MM	0.0965	1.81819	3.13892e-1	0.0310	2	10.042	FM	0.1116	9257.09277	1382.00073	99.2618
3	9.751	MF	0.1037	12.87006	2.06860	0.2195	3	10.516	FM	0.2158	58.51730	4.52041	0.6275
4	10.042	FM	0.1183	5795.53711	816.48138	98.8360	4	10.779	FM	0.1402	2.82679	3.35930e-1	0.0303
5	10.531	FM	0.1721	34.71669	3.36196	0.5921	5	14.037	BB	0.1016	6.42618	1.01804	0.0689
6	10.785	FM	0.1344	2.44897	3.03666e-1	0.8418							
7	14.038	MM	0. 1891	4.64618	7.89625e-1	0.6792	Total	s :			9325.93374	1388.18956	
Total	s :			5863.79452	824.96523								

HPLC Compound 5

Signal 1: DAD1 A, Sig=330,200 Ref $=550,50$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.637	BB	0.1198	18.18447	2.31092	0.3966
2	6.252	MM	0.1170	2.55232	3.63564e-1	0.0557
3	6.559	MM	0.1160	1.52749	$2.19373 \mathrm{e}-1$	0.0333
4	8.705	MF	0.1096	4.48760	6.82128e-1	0.0979
5	8.945	FM	0.2010	8.43796	$6.99805 \mathrm{e}-1$	0.1840
6	9.119	FM	0.1943	7.88025	6.75934e-1	0.1719
7	9.359	FM	0.1193	4.00252	5.59142e-1	0.0873
8	9.747	FM	0.1399	4368.44580	520.47461	95.2774
9	10.052	FM	0.1808	50.56490	4.66221	1.1028
10	10.320	FM	0.1718	31.27438	3.03397	0.6821
11	10.552	FM	0.1269	20.68893	2.71728	0.4512
12	10.678	FM	0.1035	3.70106	5.95917e-1	0.0807
13	10.961	FM	0.1119	21.59909	3.21784	0.4711
14	11.674	BB	0.1031	15.15764	2.35580	0.3306
15	12.599	BB	0.1033	13.79095	2.13716	0.3008
16	14.028	VB	0.1035	12.67939	1.86152	0.2765
Total	s :			4584.97476	546.56716	

Signal 2: DAD1 G, Sig=274, 16 Ref $=550,50$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	5.639		0.1209	17.07057	2.24046	0.1890
2	6.249		0.1169	9.17972	1. 20413	0.1016
3	6.559		0.1083	1. 30608	2.00913e-1	0.0145
4	8.707	MF	0.1043	4.55193	7.27149e-1	0.0504
5	9.117	FM	0.3173	26.93488	1.41493	0.2982
6	9.370	FM	0.1256	6.65056	8.82820e-1	0.0736
7	9.748	FM	0.1180	8754.33398	1236.17505	96.9103
8	10.058	FM	0.1932	68.84543	5.94036	0.7621
9	10.323	FM	0.1521	34.15041	3.74257	0.3780
10	10.555	FM	0.1516	40.50114	4.45409	0.4483
11	10.962	FM	0.1165	25.91370	3.70673	0.2869
12	11.676	BB	0.1026	16.95728	2.65300	0.1877
13	12.602	BB	0.1042	16.34636	2.50260	0.1810
14	14.030	VB	0.1008	10.69770	1.62559	0.1184
Totals	s		9033.439741267 .47039			

HPLC Compound 6

Signal 1: DAD1 A, Sig=330, 200 Ref $=550,50$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.904	MM	0.1058	3.56522	$5.61768 \mathrm{e}-1$	0.0687
2	8.158	MM	0.0890	1.69985	$3.18470 \mathrm{e}-1$	0.0328
3	8.411	MF	0.1062	9.62270	1.50996	0.1855
4	8.624	MF	0.1403	7.09010	$8.42230 \mathrm{e}-1$	0.1367
5	8.944	MF	0.1677	9.22324	9.16861e-1	0.1778
6	9.136	MF	0.1090	102.09525	15.60889	1.9683
7	9.371	MF	0.1487	6.69319	$7.50134 \mathrm{e}-1$	0.1290
8	9.676	MF	0.1169	4938.46582	704.11267	95.2086
9	10.014	MF	0.1146	8.69852	1.26477	0.1677
10	10.278	MF	0.1619	13.22692	1.36150	0.2550
11	10.398	MF	0.1015	5.62420	9.23731e-1	0.1084
12	10.678	FM	0.1073	2.05109	3.18719e-1	0.0395
13	10.946	MM	0.1055	26.32039	4.15735	0.5074
14	11.398	MF	0.1065	1.04640	$1.63762 \mathrm{e}-1$	0.0202
15	11.598	MF	0.1069	8. 37694	1.30620	0.1615
16	12.171	MM	0.1441	5.03327	5.81958e-1	0.0970
17	13.223	BB	0.1137	19.45991	2.64942	0.3752
18	15.758	MM	0.1121	4.08571	$6.07180 \mathrm{e}-1$	0.0788
19	16.799	BB	0. 1133	14.61656	1.99864	0.2818

Totals :
$5186.99528 \quad 739.95421$

Signal 2: DAD1 F, Sig=284,16 Ref $=550,50$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~s}_{\mathrm{s}}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.898	MF	0.0950	2.81639	$4.93872 \mathrm{e}-1$	0.0249
2	8.149	MF	0.1041	4.76618	7.62986e-1	0.0422
3	8.410	MF	0.1038	18.66243	2.99531	0.1651
4	8.626	MF	0.1598	15.93376	1.65199	0.1409
5	8.941	MF	0.1805	22.94137	2.11889	0.2029
6	9.136	MF	0.1159	105.27835	15.13420	0.9311
7	9.411	MF	0.1278	11.91934	1.55384	0.1054
8	9.676	MF	0.1128	1.09623 e 4	1619.64441	96.9532
9	9.997	MF	0.1059	23.70437	2.70946	0.2096
10	10.280	MF	0.1462	22.48327	2.56251	0.1988
11	10.392	FM	0.1194	15.94146	2.22541	0.1410
12	10.678	MM	0.0987	4.42833	$7.47463 \mathrm{e}-1$	0.0392
13	10.947	MM	0.1084	49.07473	7.54863	0.4340
14	11.600	FM	0.1045	14.59027	2.32761	0.1290
15	12.192	MF	0.1632	6.09994	6.23080e-1	0.0539
16	12.558	FM	0.1201	1.60356	$2.22454 \mathrm{e}-1$	0.0142
17	13.225	BB	0.1241	11.58981	1.40744	0.1025
18	15.762	BB	0.1117	7.97025	1.11108	0.0705
19	16.802	MM	0.1120	4.68887	$6.97820 \mathrm{e}-1$	0.0415

Totals :
$1.13068 \mathrm{e} 4 \quad 1666.54845$

HPLC Compound 7

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

HPLC Compound 8

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

Peak R \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.323	MM	0.1189	9.33224	1.30863	0.1622	1	7.317	BB	0.1328	60.44975	6.72714	0.3852
2	8.278	BV	0.1316	28.16499	3.17270	0.4896	2	8.279	BV	0.1316	74.76783	8.89972	0.4761
3	8.776	VB	0.1554	5714.62744	540.30011	99.3481	3	8.775	VB	0.1655	1.55569 e 4	1401.67444	99.1387
Totals	s			5752.12467	544.78144		Total	s :			1.56920 e 4	1416.50129	

HPLC Compound 9

Signal 1: DAD1 A, Sig=330, 200 Ref=550,50

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.263	BB	0.1295	8.96987	1.87332	0.1820	1	7.268	BB	0.1308	40.44790	4.77439	0.2817
2	8.983	MF	0.1688	4828.12861	476.62775	97.9373	2	8.983	MF	0.1722	1.39697 e 4	1352.39801	97.2977
3	9.813	FM	0.2827	12.75467	1.04896	0.2587	3	9.805	FM	0.2368	59.56230	4.19212	0.4148
4	10.274	FM	0.1529	5.84979	6.37674e-1	0.1187	4	10.269	FM	0.1895	29.30147	2.57722	0.2041
5	10.474	FM	0.1540	5.93827	6.42651e-1	0.1205	5	10.475	FM	0.2293	42.92558	3.11965	0.2990
6	10.844	BB	0.1257	9.83322	1.22485	0.1995	6	10.846	FM	0.2061	33.09069	2.67655	0.2365
7	11.535	BB	0.1407	37.63882	4.83996	0.7635	7	11.536	BB	0.1409	120.07300	12.86047	0.8363
8	12.482	BB	0.1380	19.66622	2.16498	0.3989	8	12.484	BB	0.1385	56.24618	6.16137	0.3917
9	13.067	MM	0.1230	1.83492	1.48281e-1	0.8210	9	13.007	MM	0.1886	6.34873	5.60905e-1	0.0442
Totals	s :			4929.80637	487.60025		Total	:			1.43577 e 4	1389.31268	

HPLC Compound 10

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{* s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	9.634	MF	0.1572	8.22762	8.72504e-1	0.1158	1	9.636	MF	0.1534	9.40972	1.02234	0.0741
2	9.834	FM	0.1465	11.18903	1.27318	0.1575	2	9.838	FM	0.1651	23.41307	2.36302	0.1843
3	11.404	MF	0.1746	6942.24268	665.11871	97.7168	3	11.404	MF	0.1681	1.24302 e 4	1232.57166	97.8354
4	11.887	FM	0.1536	13.24840	1.43800	0.1865	4	11.884	FM	0.1780	33.52730	3.13985	0.2639
5	12.327	MM	0.2014	8.13280	6.73106e-1	0.1145	5	12.333	FM	0.1685	6.23373	6.47303e-1	0.8491
6	12.794	MF	0.0899	15.13313	2.80692	0.2138	6	12.794	MF	0.1831	28.55816	4.61488	0.2248
7	12.963	FM	0.1577	182.22871	10.80432	1.4389	7	12.964	FM	0.1543	170.28780	18.39075	1.3403
8	13.220	FM	0.1293	4.05084	5.22011e-1	0.0570	8	13.247	FM	0.1138	3.58803	5.25305e-1	0.0282
Totals	s :			7104.45321	683.50876		Total	s :			1.27652 e 4	1263.27511	

HPLC Compound 11

Signal 1: DAD1 A, Sig=330, 200 Ref $=550,50$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	9.615	BB	0.1243	9.36506	1.13425	0.1371	1	9.618	BB	0.1260	13.92036	1.72773	0.1021
2	11.679	MF	0.1767	6812.16553	642.65698	99.7393	2	11.679	MF	0.1693	1.36119 e 4	1340.29089	99.8311
3	12.285		0.1469	8.43945	9.57526e-1	0.1236	3	12.251	FM	0.1198	9.11127	1.26757	0.0668

Totals :
$6829.97004 \quad 644.74876$

Signal 2: DAD1, Sig=291.00, 16.00 Ref=550.00, 50.00, EXT

Totals :
1.36349 e 41343.28619

HPLC Compound 18

Signal 1: DAD1 A, Sig=330, 200 Ref=550,50

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.789	MM	0.1835	9.83691	8.21007e-1	0.1332	1	7.780	BB	0.1738	40.69121	3.54754	0.3585
2	10.442	MF	0.1636	6761.18408	688.59430	99.6827	2	10.442	MF	0.1585	1.12943 e 4	1187.36853	99.5164
3	10.946	FM	0.1363	12.48178	1.52576	0.1840	3	10.940	FM	0.1463	14.18865	1.61590	0.1250
Total				6782.78277	690.94107		Total	s :			1.13492 e 4	1192.53197	

HPLC Compound 38

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.129	MM	0.1912	3.01423	$2.62811 \mathrm{e}-1$	0.1699	1	10.515	MF	0.1096	2767.84473	411.59457	99.1490
2	10.515	MM	0.1098	1759.11926	267.06094	99.1550	2	10.998	FM	0.1913	4.78554	$4.16963 \mathrm{e}-1$	0.1752
3	11.062	MM	0.1535	2.49148	$2.78486 \mathrm{e}-1$	0.1484	3	11.124	FM	0.0805	1.12226	$2.32425 e-1$	0.8411
4	11.329	MF	0.1036	4.45789	$7.21103 \mathrm{e}-1$	0.2513	4	11.323	FM	0.1206	9.17852	1.26862	0.3361
5	11.462	MF	0.1073	1.93765	$3.01009 \mathrm{e}-1$	0.1092	5	11.566	FM	0.1069	3.25396	5.07408e-1	0.1191
6	11.595	FM	0.1050	3.08968	$4.90312 \mathrm{e}-1$	0.1742	6	11.800	MM	0.1068	4.98164	7.64929e-1	0.1795
Total	s :			1774.11019	269.10666		Total	s :			2731.08664	414.78491	

HPLC Compound 39

Signal 1: DAD1 A, Sig=330, 200 Ref $=550,50$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	5.864		0.1141	1.00763	$1.47135 \mathrm{e}-1$	0.0447	1	5.860	BB	0.1487	9.77839	1.81236	0.0812
2	7.960		0.1354	10.89578	1.34153	0.4832	2	7.963	BB	0.1250	56.95283	7.14178	0.4731
3	8.557	MM	0.1359	1.90896	$2.34164 \mathrm{e}-1$	0.0847	3	8.557	MM	0.1303	3.17456	4.06126e-1	0.0264
4	9.859	MF	0.1367	2114.14819	257.71332	93.7519	4	9.860	MF	0.1377	1.15466 e 4	1397.05493	95.9148
5	10.442	FM	0.1384	83.43619	10.05059	3.7000	5	10.442	FM	0.1400	169.84541	20.22128	1.4109
6	11.170	FM	0.1014	1.19145	$1.95883 \mathrm{e}-1$	0.0528	6	11.010	MF	0.1326	7.47281	9.39391e-1	0.0621
7	12.098	BB	0.1282	40.29640	4.88599	1.7869	7	11.157	FM	0.1336	5.86704	$7.31655 \mathrm{e}-1$	0.8487
8	13.810	MM	0.1217	2.16050	$2.95928 \mathrm{e}-1$	0.0958	8	12.100	BB	0.1281	223.98973	27.17718	1.8600
							9	13.807	BB	0.1335	14.79097	1.70021	0.1229
Total	s :			2255.84511	274.86454								
							Totals				1.20383 e 41456.38492		

HPLC Compound 40

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	6.814	MM	0.1306	6.53320	8.33988e-1	0.1726	1	6.014	BB	0.1382	15.91976	1.74943	0.1912
2	8.551	BB	0.1242	62.63586	7.92926	1.6547	2	8.552	BB	0.1258	127.24166	15.83137	1.5283
3	10.440	BB	0.1323	3706.57666	449.04364	97.9204	3	10.440	BB	0.1295	8175.51563	1820.15442	98.1973
4	11.127	BB	0.1450	9.55159	1.02226	0.2523	4	11.135	MM	0.1324	6.92784	8.72410e-1	0.0832
Total				3785.29732	458.82915		Total	s :			8325.68489	1038.60762	

HPLC Compound 44

Signal 1: DAD1 A, Sig=330,280 Ref=550,50

HPLC Compound 45

Signal 1: DAD1 A, Sig=330,200 Ref=550,50

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%	Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	11.019	MF	0.1765	4.36887	$4.12618 \mathrm{e}-1$	0.1010	1	11.005	MF	0.1760	12.86699	1.21813	0.0947
2	11.185	FM	0.0960	2.32950	$4.04262 \mathrm{e}-1$	0.0538	2	11.125	FM	0.0962	5.44487	$9.43734 \mathrm{e}-1$	0.0401
3	11.700	BB	0.1250	4319.02441	541.99005	99.8167	3	11.700	BB	0.1314	1.35531e4	1657.98474	99.7759
4	13.805	MM	0.1079	1.23456	$1.90627 \mathrm{e}-1$	0.8285	4	13.796	BB	0.1476	12.12931	1.26824	0.0893
Total	s :			4326.95734	542.99756		Total	s :			1.35835 e 4	1661.41485	

HPLC Compound 46

Signal 1: DAD1 A, Sig=330, 200 Ref=550,50

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.351	BB	0.1358	16.43426	1.84768	0.3023	1	10.351	BB	0.1345	31.43723	3.57756	0.3019
2	11.345	MM	0.1272	2.36062	3.09312e-1	0.0434	2	11.331	MM	0.1145	2.49630	$3.63414 \mathrm{e}-1$	0.0240
3	11.691	MM	0.1261	4.27950	5.65829e-1	0.0787	3	11.684	MM	0.1239	4.87090	6.55346e-1	0.0468
4	12.349	MF	0.1366	5348.98633	652.49316	98.4046	4	12.349	MF	0.1348	1.82498 e 4	1266.81738	98.4281
5	12.648	FM	0.0748	4.89583	9.22236e-1	0.0753	5	12.621	FM	0.1638	12.07526	1.93933	0.1160
6	15.616	BB	0.1281	59.55434	7.22788	1.8956	6	15.617	BB	0.1284	112.88532	13.65660	1.0833
Totals				5435.71608	663.36611		Total	s :			1.04134 e 4	1287.00964	

