Design, Synthesis and Biological Evaluation of Novel Pyrimidine Derivatives as Bone Anabolic Agents Promoting Osteogenesis via BMP2/SMAD1 Signaling Pathway

Sumit K. Rastogi, Sonu Khanka, Santosh Kumar, Amardeep Lakra, Rajat Rathur, Kriti Sharma, Amol Chhatrapati Bisen, Rabi Sankar Bhatta, Ravindra Kumar, Divya Singh, Arun K. Sinha

S. No.	Content	Page No.
1	Material and Methods	02
2	Experimental procedure and characterization of chalcones	02-04
3	Spectral data for starting material	05-11
4	Spectral data for pyrimidine derivatives	12-43
5	HPLC purity data for active compounds	44-49
6	ALP activity of the compounds	50
7	Primer sequence	51
8	Reference	51

Chemistry:

1. Material and Methods:

All materials and reagents were purchased from commercial suppliers from Sigma Aldrich or Alfa-Aesar or Spectrochem and used without further purification. All the glass apparatus were oven-dried prior to use. Silica gel (mesh size 100-200) was used for column chromatography and TLC was performed on Merck- pre-coated silica gel 60-F254 and aluminum oxide 60-F254 plates. The solvents of Thermo-Fisher were used for the column chromatography. The melting point was recorded with the COMPLAB melting point apparatus. All the synthesized compounds were fully characterized by ¹H, ¹³C, ESI-MS, and ESI-HRMS analysis. ¹H spectrums were recorded at 300/400/500 MHz, and ¹³C spectrums were recorded at 100/125 MHz. CDCl₃, and DMSO-d₆ were used as solvents for NMR recording, and tetramethyl silane as internal standards. Chemical shifts were reported in parts per million (ppm) downfield from solvent reference, and coupling constants (*J*) were measured in Hz. ESI-MS spectra were obtained as LCQ Advantage Ion Trap mass spectrometer (Finnigan Thermo Fischer Scientific) and high-resolution mass spectra (ESI-HRMS) were recorded on Agilent 6520 ESI-QTOP mass spectrometer.

2. Experimental procedure and characterization of chalcones (starting material):

A mixture of benzaldehyde (1.1 mmol), acetophenone (1 mmol), and 30% aqueous NaOH (2 mL) in 10 mL ethanol was stirred in a 50 mL round bottom flask at room temperature. The reaction progress was monitored by TLC (25% ethyl acetate in hexane). After the completion of the reaction, ethanol was evaporated by rotavapor. The obtained crude was washed with (3 x 15 mL) hot water and followed by MeOH (3 x 15 mL) on a Buckner funnel, dried under vacuum resulting in a pure product obtained with 91% to 94% yield.^{S1}

3a. (*E*)-1-(4-bromophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of 3a by the reaction of 2,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-bromoacetophenone (199 mg, 1 mmol) in the

presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3a** (354 mg, yield: 94%) was obtained as a yellow solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 15.6 Hz, 1H), 7.88 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 15.6 Hz, 1H), 7.13 (s, 1H), 6.54 (s, 1H), 3.96 (s, 3H), 3.92(s, 6H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 190.1, 154.8, 152.8, 143.3, 140.8, 137.6, 131.8, 130.0, 127.3, 119.8, 115.3, 111.6, 96.8, 56.6, 56.4, 56.1.

3b. (*E*)-1-(4-chlorophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of **3b** by the reaction of 2,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-chloroacetophenone (154 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3b** (305 mg, yield: 92%) was obtained as a yellow solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 15.8 Hz, 1H), 7.95 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 15.7 Hz, 1H), 7.12 (s, 1H), 6.52 (s, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 189.9, 154.8, 152.8, 143.3, 140.8, 138.6, 131.2, 129.9,128.8, 119.8, 115.3, 111.6, 96.8, 56.6, 56.4, 56.1.

3c. (*E*)-1-(4-fluorophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of **3c** by the reaction of 2,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-fluoroacetophenone (138 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3c** (288 mg, yield: 91%) was obtained as a yellow solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 15.8 Hz, 1H), 8.06-8.01 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 15.7 Hz, 1), 7.16 (dd, J = 8.6 Hz, 1H), 7.12 (s, 1H), 6.53 (s, 1H), 3.95 (s, 3H), 3.91 (s, 3H), 3.90 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 189.5, 165.4 (d, $J^1 = 251.8$ Hz), 154.8, 152.7, 143.4, 140.4, 135.2, 131.0 (d, $J^3 = 9.0$ Hz), 119.9, 115.5 (d, $J^2 = 21.5$ Hz), 111.6, 96.9, 56.6, 56.4, 56.1.

3d. (*E*)-1-(4-methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of **3d** by the reaction of 2,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-methoxyacetophenone (150 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3d** (298 mg, yield: 91%) was obtained as a yellow solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 16.0 Hz, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 16.0 Hz, 1H), 7.13 (s, 1H), 6.98 (d, J = 8.0 Hz, 2H), 6.53 (s, 1H), 3.95 (s, 3H), 3.91

(s, 6H), 3.89 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): 189.0, 163.1, 154.5, 152.3, 143.3, 139.3, 131.7, 131.1, 130.7, 124.3, 120.2, 115.7, 113.7, 111.5, 97.0, 56.6, 56.4, 56.0, 55.4.

3e. (E)-1-(p-tolyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of **3e** by the reaction of 2,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-methylacetophenone (134 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3e** (296 mg, yield: 95%) was obtained as a yellow solid after crystallization in MeOH. M.P. 120°C. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 16.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 16.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.13 (s, 1H), 6.53 (s, 1H), 3.95 (s, 3H), 3.90 (s, 6H), 2.43 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 190.6, 154.6, 152.4, 143.3, 143.0, 139.7, 136.2, 129.1, 128.5, 128.3, 124.0, 120.4, 115.7, 111.5, 96.9, 56.6, 56.4, 56.0, 21.7.

3f. (*E*)-1-(4-bromophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of 3f by the reaction of 3,4,5 tri methoxy benzaldehyde (215 mg, 1.1 mmol), and 4-bromoacetophenone (199 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound 3f (3 mg, yield: 94%) was obtained as a yellow solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (d, *J* = 15.6 Hz, 1H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 15.6 Hz, 1H), 7.60 (d, *J* = 8.6 Hz, 2H), 6.13 (s, 2H), 3.90 (s, 6H), 3.86 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 191.1, 163.4, 161.9, 138.1, 136.7, 131.6, 130.0, 126.9, 121.5, 106.5, 90.6, 55.9, 55.4.

3g. (*E*)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one: Above General procedure was followed for the synthesis of **3g** by the reaction of 4-methoxy benzaldehyde (136 mg, 1.1 mmol), and 4-chloroacetophenone (154 mg, 1 mmol) in the presence of 30% aqueous NaOH (2 mL) in 10 mL ethanol for 12 hours at room temperature. Pure compound **3g** (252 mg, yield: 93%) was obtained as a white solid after crystallization in MeOH. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.6 Hz, 2H), 7.78 (d, *J* = 15.6 Hz, 1H), 7.59 (d, *J* = 8.7 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 15.6 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 189.2, 161.9, 145.2, 138.9, 136.8, 130.3, 129.8, 128.9, 127.5,119.2, 114.5, 55.4.

3. Spectral data for starting material

¹H NMR for 3a

¹H NMR for 3d

¹H NMR for 3e

¹H NMR for 3f

-0.5

0.0

--- 55.43

4. Spectral data for pyrimidine derivatives

¹H NMR for 5a

¹³C NMR for 5e

¹³C NMR for 7e

¹³C NMR for 8

¹³C NMR for 9

5.5 5.0 f1 (ppm) 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR for 17c

5. Representative HPLC profile for active compounds:

HPLC profile for 5a

```
Acq. Operator
               : Dr. Anil Kumar K.S.
                                                 Seq. Line : 4
Acq. Instrument : Instrument 1
                                                  Location : Vial 13
Injection Date : 1/15/2018 4:39:44 PM
                                                       Inj: 1
                                                Inj Volume : 3.000 µl
Aca. Method
                : C:\CHEM32\1\DATA\MANISHA-15-01-2018-3 2018-01-15 15-42-16\ACN-WATER-90-10.M
Last changed
                : 1/15/2018 4:06:19 PM by Dr. Anil Kumar K.S.
                  (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
               : 1/15/2018 3:42:15 PM by Dr. Anil Kumar K.S.
Last changed
Method Info
               : OSDD
        DAD1 A, Sig=220,20 Ref=off (MANISHA-15-01-2018-3 2018-01-15 15-42-16\013-0401.D)
   mAU -
   2500 -
   2000 -
   1500 -
   1000 -
    500 -
     0
                         4 6 8
off (MANISHA-15-01-2018-3 2018-01-15 15-42-16\013-0401.D)
                                                                       10
                                                                                                14
        DAD1 B, Sig=254,20 Ref
    mAU
   2000 -
   1750 -
   1500 -
   1250 -
   1000 -
    750 -
    500 -
                                 073
    250
     0-
                                                                                                14
                                                                       10
   -----
                         Area Percent Report
Sorted By
                      :
                             Signal
Multiplier
                             1.0000
                     :
                                                                                  ŅH₂
                             1.0000
Dilution
                      :
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=220,20 Ref=off
                                                                                  5a
Peak RetTime Type Width
                                       Height
                             Area
                                                  Area
                                                   %
 #
     [min]
                  [min]
                           [mAU*s]
                                       [mAU]
----|-----|-----|-----|------|
                                                 ----
                                      -----
      3.963 BV
                  0.0735
                           73.05510
                                       15.36156
                                                  0.3529
  1
      4.072 VB
                  0.0747
                            88.53242
                                       18.22295
                                                  0.4276
   2
      4.466 W
                  0.1138 2.04355e4 2844.93433
                                                 98.7021
   3
   4
     5.013 VB
                  0.0958 107.14032
                                     17.40480
                                                  0.5175
Totals :
                         2.07043e4 2895.92363
Signal 2: DAD1 B, Sig=254,20 Ref=off
Peak RetTime Type Width
                             Area
                                       Height
                                                  Area
                          [mAU*s]
                                       [mAU]
                                                   %
                  [min]
 #
    [min]
----|-----|----|-----|------|
                                                   ----|
  1
      4,073 BB
                  0.0838 119.31906
                                      21,17112
                                                  0.7881
      4.466 VV
                  0.1067 1.49449e4 2160.34351
                                                98.7057
   2
```

HPLC profile for 5b

HPLC profile for 7b

Acq. Operator	: Dr. Anil Kumar K.S. Seq. Line : 7				
Acq. Instrument	: Instrument 1 Location : Vial 7				
Injection Date	: 4/13/2018 5:06:35 PM Inj: 1				
Acq. Method	: C:\CHEM32\1\DATA\ANIL-13-04-2018-4 2018-04-13 15-24-00\METH-WATER-90-10-NEW				
Last changed	.M : 4/13/2018 4:48:42 PM by Dr. Anil Kumar K.S.				
	(modified after loading)				
Analysis Method	: C:\CHEM32\1\METHODS\METH-WATER-90-10-NEW.M				
Last changed	: 4/13/2018 3:23:59 PM by Dr. Anil Kumar K.S.				
Method Info	: OSDD				
DAD1 A, Si	g=220,20 Ref=off (ANIL-13-04-2018-4 2018-04-13 15-24-00/007-0701.D)				
mAU]	P				
500	<u>#</u>				
400					
300					
200					
100	018				
0-	- n				
DAD1 B S	1 2 3 4 5 6 7 8 9 min				
mAU]					
300-	Ŧ				
250					
200					
100					
50	2				
00	305				
• 1 ,,,,,					
***********	1 2 3 4 5 6 7 8 9 mit				
	Area Percent Report				

Sorted By	: Signal				
Multiplier	: 1,0000				
Dilution	: 1.0000				
Use Multiplier	& Dilution Factor with ISTDs				
Signal 1: DAD1	A, Sig=220,20 Ref=off				
Peak RetTime Ty	pe Width Area Height Area				
# [min]	[min] [mAU*s] [mAU] %				
	··[·····]·····[·····]·····]				
1 3.018 VV	0.1272 178.84203 18.43100 1.7011 O 7b Br				
2 4.180 VV	0.2173 1.03346e4 636.95422 98.2989				
Totals :	1.05134e4 655.38523				
Signal 2: DAD1	B, Sig=254,20 Ref=off				
Peak RetTime Ty	pe Width Area Height Area				
# [min]	[minj [mAU*s] [mAU] %				
1 3 926 94	0 1238 94 99692 10 27026 1 7543				
2 4,180 \/	0.2161 5315.11816 329.63553 98.2457				
Totals :	5410.02509 339.90578				

HPLC profile for 17c

HPLC profile for 18a

HPLC profile for 10c

6. ALP activity for rest compounds

Figure: S1. ALP activities of the inactive compounds.

7. Table S1: Sequence of primer for real time-PCR

S. No.	Gene name	Sequence
1.	Glyceraldehyde-3-phosphate dehydrogenate (GAPDH)	F-5'-AGCTTGTCATCAACGGGAAG-3' R-5'-TTTGATGTTAGTGGGGTCTCG-3'
2.	Bone Morphogenetic protein 2 (BMP-2)	F-5'-CGGACTGCGGTCTCCTAA-3' R-5'-GGGGAAGCAGCAACACTAGA-3'
3.	Type 1 collagenase (Col-1)	F-5'-CATGTTCAGCTTTGTGGACCT-3' R-5'-GCAGCTGACTTCAGGGATGT-3'
4.	Runt related transcription factor 2 (RUNX-2)	F-5'-CCCGGGAACCAAGAAATC-3' R-5'-AGATAGGAGGGGTAAGACTGG-3'

8. Reference:

 Kumar, R.; Mohanakrishnan, D.; Sharma, A.; Kaushik, N. K.; Kalia, K.; Sinha, A. K.; Sahal, D. Reinvestigation of structure--activity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. *Eur. J. Med. Chem.* 2010, 45, 5292-5310.