Development of Hsp90 C-terminal inhibitors with noviomimetics that manifest anti-proliferative activities

Eva Amatya ${ }^{\text {a }}$, Chitra Subramanian, ${ }^{\text {b }}$ Mark S. Cohen ${ }^{b^{*}}$ and Brian S. J. Blagga ${ }^{*}$
${ }^{\text {a Department of Chemistry and Biochemistry, Warren Center for Drug Discovery, University of Notre }}$ Dame, Notre Dame, Indiana, 46556, USA
${ }^{\mathrm{b}}$ Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States

Supporting Information

Materials and methods

PC3 cells were maintained in RPMI-1640 media, MDA-MB-231 cells were maintained in DMEM media and SKBr3 cells were maintained in McCoy's media and grown in a humidified atmosphere ($37^{\circ} \mathrm{C}$, $5 \% \mathrm{CO}_{2}$). The cells were grown to confluence, seeded (2000 cells/well (PC3, MDA-MB-231 and SKBr3) in a 96 -well plate, and placed in the incubator for 24 h . Compounds or vehicle at varying concentrations in DMSO (0.5% DMSO final concentration) were administered and then incubated for 72 hours. At 72 h , the \% of viable cells was determined using the MTS/PES cell proliferation kit (Promega) according to the manufacturer's instructions. Results were calculated based on the assumption that the number of living cells was proportional to the absorbance at 490 nm , and results are presented as means \pm SD deviation from two independent experiments. Inhibition graphs are based on mean values obtained from each concentration relative to control values, and half-maximal inhibitory concentrations $\left(\mathrm{IC}_{50}\right)$ were calculated using GraphPad Prism software.

Western Blot

SKBr3 cells were seeded at 700,000 cells/well in 6-well plates (VWR, 10861-696). Once cells had reached $\sim 80 \%$ confluency, the media was aspirated and replaced with 2 mL of media containing compound or vehicle (1% DMSO) and incubated for a 24 hour treatment time. After 24 hours, cells were washed with ice cold PBS and then lysed with cell lysis buffer ($130 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton S24 X-100, 1 mM EDTA, 0.1% SDS, 10 mM Tris-Cl pH 8.0 in water + freshly added 1 mM Protease Cocktail 2, 1 mM Protease Cocktail 3, 1 mM Phosphatase inhibitor, and 1 mM PMSF). Cell lysates were obtained by centrifugation at $10,000 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. Protein concentrations were determined using the Pierce BCA assay kit following the manufacturer's instructions. Then, 20 ug of each normalized protein lysate was electrophoresed on 10\% SDS-polyacrylamide gels and transferred onto PVDF membranes. Membranes were washed in Tris-buffered saline containing Tween (TBST: 10 mM Tris- $\mathrm{HCl}, 150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.2$, and 0.1% Tween 20), incubated in blocking buffer (7% non-fat milk in H 2 O), and then incubated with primary antibodies at $4^{\circ} \mathrm{C}$ overnight. After washing with TBST, membranes were incubated in their
respective secondary antibodies for 1 hour at room temperature. The blots were developed using Clarity Max Western ECL Blotting Substrates (Bio-Rad). The following primary antibodies were obtained from Cell Signaling Technology (Danvers, MA): Akt (9272), β-Actin (8H10D10), HER2/ErbB2 (29D8) and CDK6 (D9G3E).The following primary antibodies were obtained from Enzo Life Sciences (Farmingdale, NY): Hsp70/Hsp72 (C92F3A-5), and Hsp90 (AC88). All primary antibodies were used at 1:1000 dilutions, and all secondary antibodies at 1:2000 dilutions unless otherwise stated. Horseradish peroxidase-conjugated secondary goat anti-mouse IgG, goat anti-mouse Ig, goat anti- rat IgG, and goat anti-rabbit IgG antibodies were purchased from Southern Biotech (Birmingham, AL).

Synthesis and characterization of final compounds

Chemistry General: ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectra were performed and the data were recorded on either Bruker Ascend 400 MHz and/or 500 MHz NMR spectrometers. Spectra were obtained in solutions of CDCl_{3}, DMSO-d6 and chemical shifts were referenced to residual CHCl_{3} and DMSO, unless stated otherwise. The chemical shifts (δ) are reported in ppm downfield from internal triethylsilane (TMS, $\delta 0.00$) and coupling constant values (J) are in $\mathrm{Hz} .{ }^{1} \mathrm{H}$ NMR data are reported as follows: range of chemical shift (multiplicity [singlet (s), doublet (d), doublet of doublets (dd), doublet of doublet of doublets (ddd), triplet (t), doublet of triplets (dt), triplet of doublets (td), doublet of doublet of triplets (ddt), quartet (q), quintet (quint), multiplet (m)], coupling constant [Hz], integration). ${ }^{13} \mathrm{C}$ NMR data are reported as chemical shift in ppm. General NMR data were obtained at $25^{\circ} \mathrm{C}$ (298.15 K). Variable temperature NMR experiments were obtained at variable temperature.

Experimental procedures:

phenyl 4-hydroxycyclohexane-1-carboxylate (8a): To a stirred solution of 4-hydroxycyclohexane-1-carboxylic acid ($100 \mathrm{mg}, 1 \mathrm{Eq}, 694 \mu \mathrm{~mol}$) in DCM (3 mL) was added phenol (65.3 $\mathrm{mg}, 1 \mathrm{Eq}, 694 \mu \mathrm{~mol})$ and DMAP ($25.4 \mathrm{mg}, 0.3 \mathrm{Eq}, 208 \mu \mathrm{~mol}$) and the solution was cooled in an ice bath at $0^{\circ} \mathrm{C}$. EDC ($160 \mathrm{mg}, 1.2 \mathrm{Eq}, 832 \mu \mathrm{~mol}$) was added to the reaction, and the solution was warmed to room temperature and stirred overnight. The reaction was quenched with water, washed with and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 11\%) to afford $\mathbf{8 a}\left(80 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta(\mathrm{ppm}) 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{tt}, J=10.5$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{tt}, J=11.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H})$,
1.37 (tdd, $J=12.8,10.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta(\mathrm{ppm})$ 174.17, 150.84, 129.54, 125.90, 121.60, 69.85, 42.39, 34.50, 27.20; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} 220.27$, found 220.71 .

4-hydroxy-N-phenylcyclohexane-1-carboxamide (8b): To a stirred solution of 4-hydroxycyclohexane-1-carboxylic acid ($200 \mathrm{mg}, 1 \mathrm{Eq}, 1.39 \mathrm{mmol}$) in DCM was added aniline (129 mg , $126 \mu \mathrm{~L}, 1 \mathrm{Eq}, 1.39 \mathrm{mmol})$ and DMAP ($50.8 \mathrm{mg}, 0.3 \mathrm{Eq}, 416 \mu \mathrm{~mol}$) were dissolved (6.0 mL and the solution was cooled in an ice bath at $0^{\circ} \mathrm{C}$. $\mathrm{EDC}(319 \mathrm{mg}, 1.2 \mathrm{Eq}, 1.66 \mathrm{mmol})$ was added to the reaction, and the solution was warmed to room temperature and stirred overnight. The reaction was quenched with water, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 12-90\%) to afford $\mathbf{8 b}$ (70% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta(\mathrm{ppm}) 7.45(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53(\mathrm{tt}, J=11.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{tt}, J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dq}, J=16.2,7.4,5.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{tdd}, J=13.3,8.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 175.34,138.21,128.63,123.90,119.90,69.20,44.77,34.05,27.69 ;$ HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ 219.28, found 219.62.

methyl 4-hydroxycyclohexane-1-carboxylate (9a): To a stirred solution of 4-hydroxycyclohexane1 -carboxylic acid ($200 \mathrm{mg}, 1 \mathrm{Eq}, 1.39 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$ was added sulfuric acid ($204 \mathrm{mg}, 111 \mu \mathrm{~L}$, 2.08 mmol) at RT. The reaction mixture was subsequently stirred at $80^{\circ} \mathrm{C}$ for 10 h . Upon completion, the residue was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc (2 X 20 mL), washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 9a (88% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta(\mathrm{ppm}) 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{tt}, J=10.6,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{tt}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{tdd}, J=13.1,11.7,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.34-1.19(\mathrm{~m}, 2 \mathrm{H})$; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$ 158.20, found 158.62 .

4-hydroxy- N-methylcyclohexane-1-carboxamide (9b): To a stirred solution of 4-hydroxycyclohexane-1-carboxylic acid ($300 \mathrm{mg}, 1 \mathrm{Eq}, 2.08 \mathrm{mmol}$) in $\mathrm{DCM}(3.0 \mathrm{~mL})$ in a pressure flask was added methanamine ($64.6 \mathrm{mg}, 1.04 \mathrm{~mL}, 2$ molar, 2.08 mmol), and DMAP ($76.3 \mathrm{mg}, 0.3 \mathrm{Eq}, 624 \mu \mathrm{~mol}$) and the solution was cooled in an ice bath at $0^{\circ} \mathrm{C}$. EDC $(479 \mathrm{mg}, 1.2 \mathrm{Eq}, 2.50 \mathrm{mmol})$ was added to the reaction, and the solution was warmed to room temperature and stirred overnight. The reaction was quenched with water, extracted with EtOAc (2 X 30 mL), washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 10\%) to afford 9b (53% yield). ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta(\mathrm{ppm}$) $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{tt}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddt}, J=15.5,11.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.66$ $(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 2 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{2}$ 157.21, found 157.78.

ethyl 4-hydroxycyclohexane-1-carboxylate (10): To a solution of ethyl 4-hydroxycyclohexane1 -carboxylic acid $(4 \mathrm{~g}, 0.03 \mathrm{~mol})$ in ethanol $(50.2 \mathrm{~mL})$ was added concentrated sulfuric acid $(4 \mathrm{~g}, 2 \mathrm{~mL}, 0.04$ mol) and stirred at room temperature (RT) for 15 mins before stirring at $80^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT and quenched with saturated solution of sodium bicarbonate. The mixture was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$), the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure to afford $10\left(90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta(\mathrm{ppm}) 4.04$ (qd, $J=7.1$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{tt}, J=10.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{tt}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tdd}$, $J=13.2,11.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 5 \mathrm{H}) ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ 172.22, found 172.90.
 ethyl 4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carboxylate (11): To a solution of ethyl 4-hydroxycyclohexane-1-carboxylate $(2.8 \mathrm{~g}, 0.016 \mathrm{~mol})$ in DMF $(50 \mathrm{~mL})$ was added TBS-Cl $(4.9 \mathrm{~g}, 2 \mathrm{~mL}$, $0.033 \mathrm{~mol})$ and triethylamine $(2.8 \mathrm{~g}, 0.016 \mathrm{~mol})$ stirred at RT. After stirring for 2 h , the reaction mixture was quenched with ice water (100 mL), acidified and extracted with ethyl acetate ($2 \times 150 \mathrm{~mL}$). The organic phase was washed with brine $(100 \mathrm{~mL})$ dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced
pressure to afford 11 (88% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 4.10(\mathrm{qd}, J=7.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ $(\mathrm{tt}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{tt}, J=11.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dtd}, J=13.1,3.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dd}, J=$ 13.1, 3.9 Hz, 2H), $1.53-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 5 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;$ HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ 286.49, found 286.76.

(4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methanol (12): To a solution of ethyl 4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carboxylate ($480 \mathrm{mg}, 1 \mathrm{Eq}, 1.68 \mathrm{mmol}$) in ether (7 mL) was added dropwise a solution of lithium aluminum hydride (LAH) ($127 \mathrm{mg}, 1.68 \mathrm{~mL}, 2$ molar, $2 \mathrm{Eq}, 3.35 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 2 h . After cooling to $0-5^{\circ} \mathrm{C}$, the reaction mixture was successively treated with water. The aqueous phase was extracted with EtOAc (3 X 50 mL). The combined organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, eluted with Hexane:EtOAc 20\%) to provide $\mathbf{1 2}$ (84% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 3.53(\mathrm{tt}, J=10.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ $-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{dddd}, J=14.8,8.3,6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.05$ $-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;$ HRMS (ESI) m$/ \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si} 244.45$, found 244.68.

4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carbaldehyde (13): To a solution of (4-((tertbutyldimethylsilyl)oxy)cyclohexyl)methanol ($1.2 \mathrm{~g}, 1 \mathrm{Eq}, 4.9 \mathrm{mmol}$) in DCM (24 mL) was added DMP $(2.3 \mathrm{~g}, 1.1 \mathrm{Eq}, 5.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the reaction mixture was quenched with a saturated aq. NaHCO_{3}. After the phases were separated, the aqueous layer was extracted with DCM (3 X 100 mL). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. . The residue was purified by flash chromatography (silica gel, eluted with Hexane:EtOAc 5\%) to provide 13 (80% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{ddq}, J=8.0,5.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 182.03,70.17,41.79$, 34.43, 26.74, 25.68, 18.00; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si} 242.43$, found 242.68 .

N -((4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methyl)aniline (14): To a stirred solution of Pd / C $(219 \mathrm{mg}, 1 \mathrm{Eq}, 2.06 \mathrm{mmol})$, ammonium formate $(1.30 \mathrm{~g}, 10 \mathrm{Eq}, 20.6 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ was added isopropanol (9 mL) and stirred at RT for 1 minute to activate Pd/C. Aniline ($192 \mathrm{mg}, 188 \mu \mathrm{~L}, 1 \mathrm{Eq}, 2.06$ mmol) and 4-((tert-butyldimethylsilyl)oxy)cyclohexane-1-carbaldehyde ($500 \mathrm{mg}, 1 \mathrm{Eq}, 2.06 \mathrm{mmol}$) were added and the reaction mixture was stirred at RT for 1 h . After completion of the reaction, Pd / C catalyst was filtered off on celite and the solvent was removed by rotary evaporation. The reaction mixture was diluted with DCM $(250 \mathrm{~mL})$ and washed with brine $(150 \mathrm{~mL})$. The organic phase was collected, dried with anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, eluted with Hexane:EtOAc 8\%) to afford 14 (75.9% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=14.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 1 \mathrm{H})$, $1.36-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{q}, J=14.1,13.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.55(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{tt}, J=10.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{ddd}, J=11.6$, $5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{tdd}, J=14.4,13.2,12.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 148.79,129.71,117.64,113.19,72.17,50.55,37.20,35.88$, 29.88, 26.38, 18.71; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NOSi} 319.56$, found 319.92.

4-((phenylamino)methyl)cyclohexan-1-ol

(15):

To
N-((4-((tert-
butyldimethylsilyl)oxy)cyclohexyl)methyl)aniline ($250 \mathrm{mg}, 1 \mathrm{Eq}, 782 \mu \mathrm{~mol}$) was added a solution mixture of $6 \mathrm{~N} \mathrm{HCl}-\mathrm{THF}-\mathrm{MeOH}(1: 2: 2)(3 \mathrm{~mL})$. The reaction was allowed to react for 1 h and then concentrated to dryness under vacuum to leave an oily crude residue which was purified by flash chromatography (silica gel, eluted with Hexane:EtOAc 33%) to afford 15 (88.4% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.53(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{tt}, J=10.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.56$ (dddd, $J=14.9,11.7,6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.13-0.98(\mathrm{~m}, 2 \mathrm{H})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$ 205.30, found 205.54.

Ts (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methyl 4-methylbenzenesulfonate (16): To a stirred solution of (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methanol ($324 \mathrm{mg}, 1 \mathrm{Eq}, 1.33 \mathrm{mmol}$) in DCM (7 mL) cooled to $0^{\circ} \mathrm{C}$ was gradually added $\mathrm{Ts}-\mathrm{Cl}(379 \mathrm{mg}, 1.5 \mathrm{Eq}, 1.99 \mathrm{mmol})$ and DMAP ($162 \mathrm{mg}, 1 \mathrm{Eq}$, 1.33 mmol) portionwise along with dropwise addition of DIPEA ($377 \mathrm{mg}, 508 \mu \mathrm{~L}, 2.2 \mathrm{Eq}, 2.92 \mathrm{mmol}$). The resulting solution was stirred at RT for 24 hours. The solvent was evaporated and the residue was diluted with EtOAc and added a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was extracted with $\operatorname{EtOAC}(2 \mathrm{X} 20 \mathrm{~mL})$, washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 15\%) to afford 16 (68% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{tt}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dt}, J$ $=13.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{dtt}, J=9.4,6.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{tdd}, J=13.3,10.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.04-0.89$ $(\mathrm{m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SSi} 398.63$, found 398.94.

tert-butyldimethyl((4-(phenoxymethyl)cyclohexyl)oxy)silane (17a): To a stirred solution of (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methyl 4-methylbenzenesulfonate ($800 \mathrm{mg}, 1 \mathrm{Eq}, 2.01 \mathrm{mmol}$) in DMF (10 mL) was added phenol ($227 \mathrm{mg}, 2.41 \mathrm{mmol}$), potassium phosphate, tribasic ($852 \mathrm{mg}, 4.01 \mathrm{mmol}$) and heated at $75^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled and filtered. The filtrate was poured into $\mathrm{H}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$ and stirred for 30 min . The resulting solution was then extracted with toluene ($3 \times 50 \mathrm{~mL}$), washed with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Distillation of the residual oil afforded $\mathbf{1 7 a}\left(73.5 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{tt}, J=10.5,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{dt}, J=13.6,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-1.02(\mathrm{~m}, 2 \mathrm{H})$, 0.89 (s, 9H), 0.07 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 159.32, 129.55, 120.62, 114.58, 72.86, $71.83,36.97,35.45,28.23,26.08,18.41$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si} 320.55$, found 320.96 .

tert-butyldimethyl((4-(thiophenoxymethyl)cyclohexyl)oxy)silane (17b): To a stirred solution of (4-((tert-butyldimethylsilyl)oxy)cyclohexyl)methyl 4-methylbenzenesulfonate ($500 \mathrm{mg}, 1.25 \mathrm{mmol}$) in DMF (8 mL) was added benzenethiol ($166 \mathrm{mg}, 155 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$), potassium phosphate, tribasic (532 $\mathrm{mg}, 208 \mu \mathrm{~L}, 2.51 \mathrm{mmol}$) and heated at $75^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled and filtered. The filtrate was poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and stirred for 30 min . The resulting solution was then extracted with toluene ($3 \times 50 \mathrm{~mL}$), washed with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and $\mathrm{H}_{2} \mathrm{O}(160 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Distillation of the residual oil afforded $\mathbf{1 7 b}$ (68% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.32-7.27$ (m, 3H), $7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12$ (m, 1H), $3.52(\mathrm{tt}, J=10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dt}, J=21.2,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.49$ (ddt, $J=11.1,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.10-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{OSSi} 336.61$, found 336.92 .

4-(phenoxymethyl)cyclohexan-1-ol (18a): To a stirred solution of tert-butyldimethyl((4(phenoxymethyl)cyclohexyl)oxy)silane ($73.8 \mathrm{mg}, 1 \mathrm{Eq}, 230 \mu \mathrm{~mol}$) in THF (0.8 mL) cooled in an ice bath at $0^{\circ} \mathrm{C}$ was gradually added acetic acid $(16.6 \mathrm{mg}, 15.8 \mu \mathrm{~L}, 1.2 \mathrm{Eq}, 276 \mu \mathrm{~mol})$ and TBAF ($72.2 \mathrm{mg}, 276 \mu \mathrm{~L}$, 1.0 molar, $1.2 \mathrm{Eq}, 276 \mu \mathrm{~mol}$) stirred at $0^{\circ} \mathrm{C}$ for 30 mins . Upon completion of reaction, THF was removed under reduced pressure, and ethyl acetate (2 mL) was added. The organic layer was washed with water, then with aqueous NaHCO_{3}, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford 18a (95% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.28$ (dd, $J=7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.98-6.84$ (m, 3H), 3.76 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.62(\mathrm{tt}, J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.76$ (dddq, $J=15.5,9.9,6.5,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39-1.27$ (m, 2H), $1.20-1.08$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 158.92, 129.25, 120.36, 114.25, 72.36, 70.84, 36.63, 34.76, 27.73; HRMS (ESI) m/z [M+H] : calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ 206.29, found 206.68.

4-((phenylthio)methyl)cyclohexan-1-ol (18b): To a stirred solution of tert-butyldimethyl((4((phenylthio)methyl)cyclohexyl)oxy)silane ($82 \mathrm{mg}, 1 \mathrm{Eq}, 0.24 \mathrm{mmol}$) in THF (0.8 mL) and MeOH (0.8 $\mathrm{mL})$ cooled in an ice bath at $0^{\circ} \mathrm{C}$ was gradually added $\mathrm{HCl}(8.9 \mathrm{mg}, 6.0 \mu \mathrm{~L}, 1 \mathrm{Eq}, 0.24 \mathrm{mmol})$ and stirred for 1 h then concentrated under reduced pressure to afford an oily crude residue. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 15%) to afford $\mathbf{1 8 b}\left(89 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{ddt}, J=8.6,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{tt}, J=$ $10.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{dtd}, J=13.0$, $11.3,10.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{tdd}, J=13.0,11.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ $137.04,128.69,128.60,125.51,70.61,40.09,36.48,34.99,30.53 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OS} 222.35$, found 222.78.

tert-butyl4-((6-(2-(3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamido)ethyl)-3'-fluoro-[1,1'-biphenyl]-3-yl)oxy)piperidine-1-carboxylate (27): To a mixture of tert-butyl 4-(tosyloxy)piperidine-1-carboxylate ($407 \mathrm{mg}, 1.2 \mathrm{Eq}, 1.15 \mathrm{mmol}$) in DMF was added Cs2CO3 (622 mg, 2 Eq, 1.91 mmol) and N-(2-(3'-fluoro-5-hydroxy-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide ($450 \mathrm{mg}, 1 \mathrm{Eq}, 954 \mu \mathrm{~mol}$) and heated at $80^{\circ} \mathrm{C}$ ovenight. The residue was then cooled and filtered. The filtrate was poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the resulting mixture was stirred for 15 mins . It was then extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 32\%) to afford 27 (81% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=18.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25$ $-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.93-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=12.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=8.1$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{tt}, J=7.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 6 \mathrm{H}), 3.68(\mathrm{ddd}, J=12.0,7.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.52$ $-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{ddd}, J=13.4,7.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{td}, J=8.4,7.7,3.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74(\mathrm{dtd}, J=12.3,7.2,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{FN}_{2} \mathrm{O}_{6} 654.66$, found 655.27.

N-(2-(3'-fluoro-5-(piperidin-4-yloxy)-[1,1'-biphenyl]-2-yl)ethyl)-3',6-

dimethoxy-[1,1'-biphenyl]-3-carboxamide (27): To a solution of tert-butyl 4-((6-(2-(3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamido)ethyl)-3'-fluoro-[1,1'-biphenyl]-3-yl)oxy)piperidine-1-carboxylate (10 mg, $1 \mathrm{Eq}, 15 \mu \mathrm{~mol})$ in DCM was added TFA ($1.7 \mathrm{mg}, 1.2 \mu \mathrm{~L}, 1 \mathrm{Eq}, 15 \mu \mathrm{~mol}$) and stirred at RT for 5 h . The reaction mixture was evaporated under reduced pressure to afford $27\left(90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~s}$, $1 \mathrm{H}), 7.10-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{td}, J=8.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{tt}, J=7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{dt}, J=11.7,4.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{qd}, J=11.3,9.9,5.3 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.60,159.10,158.74,155.41,141.99,138.79,130.88,130.19$, $129.76,129.68,129.15,128.89,128.34,127.83,126.68,124.70,121.78,117.42,116.05,115.84,115.42$, $115.11,114.08,112.65,110.62,72.31,55.59,55.14,43.09,40.77,31.79,31.33 ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}:$ calculated for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{FN}_{2} \mathrm{O}_{4}$ 554.66, found 555.27.

N-(2-(5-(allyloxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-

[1,1'-biphenyl]-3-carboxamide (30): To a stirred solution of 3-bromoprop-1-ene ($61.6 \mathrm{mg}, 44.0 \mu \mathrm{~L}, 1.2$ Eq, $509 \mu \mathrm{~mol}$) in DMF was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{Eq}, 848 \mu \mathrm{~mol})$ and N -(2-(3'-fluoro-5-hydroxy-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide ($200 \mathrm{mg}, 1 \mathrm{Eq}, 424 \mu \mathrm{~mol}$) and heated at $80^{\circ} \mathrm{C}$ for 4 h . The residue was then cooled and filtered. The filtrate was poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the resulting mixture was stirred for 15 mins . It was then extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 24\%) to afford $\mathbf{3 0}\left(92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.69$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59 (d, $J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=9.1,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.00(\mathrm{~m}$, $9 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{dt}, J=8.7,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.11-6.03(\mathrm{~m}, 2 \mathrm{H})$, $6.01(\mathrm{dd}, J=5.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dt}, J=5.3,1.6$
$\mathrm{Hz}, 4 \mathrm{H}), 3.85(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;$ HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{FNO}_{4} 511.59$, found 511.89.

N-(2-(3'-fluoro-5-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)propoxy)-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (31): In a pressure flask purged with Argon was added acetoxysilver ($1.11 \mathrm{mg}, 0.1 \mathrm{Eq}, 6.67 \mu \mathrm{~mol}$), N -(2-(5-(allyloxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide ($34.1 \mathrm{mg}, 1$ Eq, $66.7 \mu \mathrm{~mol}$) and Toluene (0.6 mL). Then 4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($12.8 \mathrm{mg}, 14.5 \mu \mathrm{~L}$, $1.5 \mathrm{Eq}, 100 \mu \mathrm{~mol}$) was added drop wise by syringe over one minute under Ar. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h . After cooling to RT, the reaction mixture was diluted with 5 mL of DCM and filtered through a plug of celite, followed by washing with $10-20 \mathrm{~mL}$ of DCM . The combined residue was concentrated under reduced pressure, The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 20\%) to afford 31 (26% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.67$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.95$ $(\mathrm{m}, 6 \mathrm{H}), 6.89(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.46(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{p}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) 166.93, 159.41, 159.04, $157.70,139.11,131.04,130.51,130.02,129.93,129.53,129.20,128.10,128.02,127.02,125.04,125.02$, $122.11,116.38,116.24,116.17,115.38,114.49,114.30,114.09,113.00,110.92,83.26,69.85,55.90,55.45$, 41.11, 32.06, 24.96, 23.89; HRMS (ESI) m/z [M+H] : calculated for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{BFNO}_{6} 639.57$, found 640.324 .

(3-((6-(2-(3',6-dimethoxy-[1, 1^{\prime}-biphenyl]-3-carboxamido)ethyl)-3'-fluoro-
[1,1'-biphenyl]-3-yl)oxy)propyl)boronic acid (32): To a stirred solution of N-(2-(5-(allyloxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide ($135 \mathrm{mg}, 1 \mathrm{Eq}, 264 \mu \mathrm{~mol}$) in THF (1.32 mL) was added Borane tetrahydrofuran complex solution ($45.4 \mathrm{mg}, 528 \mu \mathrm{~L}$, 1 molar, 2 Eq , 528 $\mu \mathrm{mol})$ dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at room temperature and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was slowly
added. After stirring for additional 12 h at RT , the reaction mixture was diluted with ethyl acetate (50 mL), and washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The combined residue was concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with DCM:MeOH 1\%) to afford 32 (20% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d$) 8.31 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (dd, $J=8.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ (dd, $J=5.8,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{td}, J=8.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol- d) 160.48, 160.22, 158.53, 143.11, 140.25, 132.00, 131.37, 130.77, 130.61, 129.65, 129.34, 129.02, 127.54, 125.99, 122.72, 116.69, 116.62, 116.04, 114.74, 114.59, $113.31,111.75,79.31,78.98,78.65,70.44,55.94,55.41,41.94,32.66,24.59 ;$ HRMS (ESI) m/z [M+H] : calculated for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{BFNO}_{6} 557.43$, found 558.246.

N-(2-(3'-fluoro-5-((tetrahydro-2H-pyran-4-yl)oxy)-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (34): A mixture of N-(2-(3'-fluoro-5-hydroxy-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (19 mg, $1 \mathrm{Eq}, 40 \mu \mathrm{~mol}$), tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate ($21 \mathrm{mg}, 2 \mathrm{Eq}, 81 \mu \mathrm{~mol}$), cesium carbonate ($20 \mathrm{mg}, 1.5$ Eq, $60 \mu \mathrm{~mol}$), and DMF (0.20 mL)was heated at $80^{\circ} \mathrm{C}$ with stirring for ovenight. The filtrate was poured into H2O (2 mL) and extracted with EA ($3 \times 5 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous NaCl , dried over anhydrous Na 2 SO 4 , and concentrated. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 25\%) to afford a white solid $\mathbf{3 4}$ (78% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 - 7.29 $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 2.64-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 1.90$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 167.25, 159.73, 159.37, 155.99, 142.63, 139.41, 131.52, $130.80,130.39,130.31,129.77,129.52,129.03,128.49,127.28,125.32,122.41,118.06,116.68,116.47$, $116.07,115.75,114.71,114.51,113.25,111.24,72.03,65.53,56.22,55.76,41.40,32.42,32.23$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{FNO}_{5} 555.65$, found 556.249 .

General procedure for the synthesis of compounds (22-25):

To a solution of N -(2-(3'-fluoro-5-hydroxy-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3carboxamide 23 (0.36 mmol) in anhydrous THF (5 mL) at $0^{\circ} \mathrm{C}$ was added diisopropyl azodicarboxylate (0.46 mmol), a requisite cyclohexanol derivative (0.4 mmol) and triphenylphosphine (0.46 mmol) and stirred at RT for 18 h . The resulting mixture was quenched with ice cold water (50 mL), extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), washed with saturated brine solution (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by column chromatography (Silica gel, eluted with Hexane:EtOAc 45\%) to afford the product which was further purified by prep HPLC to give the pure compounds 22-25 (10-40\% yield).

\boldsymbol{N}-(2-(5-((4-(benzylthio)cyclohexyl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-

 4-hydroxy-3-(3-methylbut-2-en-1-yl)benzamide (22a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.47$ (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dq}, J=8.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $8.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{ddd}, J=11.2,8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{ddd}, J=8.8,4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $9.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.61(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{dd}, J=9.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{t}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.46$ $(\mathrm{q}, J=10.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.22,157.43,156.10,143.72,138.69,135.77$, $131.12,130.59,130.04,129.95,129.42,128.86,128.67,128.50,127.10,127.02,126.42,121.20,117.70$, $115.72,115.66,41.66,41.01,35.21,32.09,31.05,30.61,29.97,25.98,18.10 ;$ HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{FNO}_{3} \mathrm{~S}$ 623.83, found 624.29.

\boldsymbol{N}-(2-(5-((4-benzylcyclohexyl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-4-

hydroxy-3-(3-methylbut-2-en-1-yl)benzamide (22b): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.48$ (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddt}, J=9.5,7.9,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=5.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{t}, J$
$=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.33-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{t}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.61(\mathrm{~s}, 1 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 166.91,159.42,156.24,141.26,139.12$, $131.08,130.51,130.02,129.50,129.28,129.21,128.27,128.13,128.05,125.84,125.06,125.03,122.11$, $117.92,116.40,116.19,115.69,115.40,114.30,114.09,112.99,110.92,72.20,55.91,55.45,43.38,41.09$, 38.91, 32.08, 29.44, 27.16, 22.07; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{FNO}_{3}$ 591.77, found 592.32.

N-(2-(3'-fluoro-5-((4-phenethylcyclohexyl)oxy)-[1,1'-biphenyl]-2-yl)ethyl)-4-

 hydroxy-3-(3-methylbut-2-en-1-yl)benzamide (22c): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.47$ (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=10.1,5.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.75$ $(\mathrm{m}, 2 \mathrm{H}), 5.86(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{td}, J=6.6,6.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{q}, ~ J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J$ $=13.8,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.80,156.56$, $143.41,135.94,131.37,130.31,129.68,128.81,128.75,128.75,128.36,127.41,127.31,126.74,126.05$, $125.40,125.37,121.58,118.18,116.72,116.51,116.07,115.96,72.69,41.35,38.83,36.51,33.72,32.38$, 30.21, 29.75, 27.63, 26.29, 18.41; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{FNO}_{3} 605.79$, found 606.34 .

\boldsymbol{N}-(2-(5-((4-benzylcyclohexyl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-

3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25a): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.12(\mathrm{~m}, 10 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.90(\mathrm{ddd}, J=8.3$, $5.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.47(\mathrm{~m}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 166.91,159.42$, 156.24, $141.26,139.12,131.08,130.51,130.02,129.50,129.28,129.21,128.27,128.13,128.05,125.84,125.06$, $125.03,122.11,117.92,116.40,116.19,115.69,115.40,114.30,114.09,112.99,110.92,72.20,55.91$, 55.45, 43.38, 41.09, 38.91, 32.08, 29.44, 27.16, 22.07; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{FNO}_{4}$ 643.80, found 644.32.

N-(2-(3'-fluoro-5-((4-phenethylcyclohexyl)oxy)-[1,1'-biphenyl]-2-yl)ethyl)-

 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25b): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 7.03 (ddt, $J=25.1,14.5,8.1 \mathrm{~Hz}, 6 \mathrm{H}), 6.90(\mathrm{ddd}, J=8.5,5.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{q}, J=4.4,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.23,159.74,159.36,156.58$, 139.44, 131.39, 130.83, 129.82, $129.53,128.81,128.75,128.45,128.33,126.05,125.38,122.43,118.21,116.04,115.72,113.31,111.25$, $72.66,56.23,55.77,41.41,38.84,36.52,33.72,32.40,29.75,27.63$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{FNO}_{4} 657.83$, found 658.33.

N-(2-(5-((4-(benzylthio)cyclohexyl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25c): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.68 (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.27$ (m, 6H), $7.26-7.21$ (m, 2H), $7.11-$ $6.94(\mathrm{~m}, 6 \mathrm{H}), 6.90(\mathrm{dd}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=9.2,4.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dt}, J=10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.36(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 157.80,156.56,143.41,135.94,131.37,130.31,129.68,128.81$, $128.75,128.75,128.36,127.41,127.31,126.74,126.05,125.40,125.37,121.58,118.18,116.72,116.51$,
$116.07,115.96,72.69,41.35,38.83,36.51,33.72,32.38,30.21,29.75,27.63,26.29,18.41 ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 167.22$, 159.74, 159.37, 156.42, 142.55, 139.42, 139.01, 131.44, 130.38, 130.29, $129.79,129.53,129.18,128.99,128.77,128.46,127.41,127.33,125.34,125.31,122.42,118.04,116.69$, $116.48,116.01,115.74,114.68,113.30,111.25,75.37,56.23,55.78,41.98,41.39,35.52,32.41,31.35$, 30.92; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{FNO}_{4} \mathrm{~S} 675.86$, found 676.29 .

N-(2-(5-((4-(difluoro(phenoxy)methyl)cyclohexyl)oxy)-3'-fluoro-[1,1'-

biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25d): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.68$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.27$ (m, 5H), 7.18 (dd, $J=$ $11.6,7.7 \mathrm{~Hz}, 3 \mathrm{H}$), $7.11-6.95(\mathrm{~m}, 6 \mathrm{H}), 6.91$ (ddd, $J=8.8,6.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 170.4,163.7,161.7,156.0,150.6,143.8,142.3,131.1,130.1,129.4(3), 128.87,127.85$, $127.81,126.69,125.4,125.2,122.0,117.9,116.4,116.2,115.8,114.4,114.2,113.99,112.88,110.81,70.8$, 55.79, 55.33, 40.9, 32.0, 28.8(2), 20.1; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{NO}_{5}$ 695.78, found 696.29.

N-(2-(5-((4-(benzyloxy)cyclohexyl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25e): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.68 (dt, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.10-6.95(\mathrm{~m}$, $7 \mathrm{H}), 6.88$ (qd, $J=5.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (dd, $J=6.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (s, 2H), $4.35(\mathrm{td}, J=6.0,4.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.56-3.42(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.13-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $166.60,159.08,158.96,158.71,155.82,130.78,130.16,129.69,129.22,129.17,128.87,127.85,127.81$, $126.69,124.69,121.77,120.30,117.58,116.06,115.85,115.38,115.09,114.31,113.98,113.77,112.64$,
$110.59,72.49,71.68,55.57,55.12,40.77,36.52,31.75,28.77,23.79$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{FNO}_{5} 659.80$, found 660.31.

N-(2-(3'-fluoro-5-((4-(phenoxymethyl)cyclohexyl)oxy)-[1,1'-biphenyl]-2-

 yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25f): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.68 (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27$ (m, 4H), 7.24 (s, 1H), $7.10-6.93$ (m, $7 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ (dd, $J=11.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (ddq, $J=10.1,6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dt, $J=11.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.58 (ddd, $J=18.1,11.7,3.1 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 166.61, 159.09, 158.72, 141.87, 138.78, $130.79,130.19,129.72,129.63,129.19,128.89,128.20,128.17,127.93,127.82,127.79,127.29,127.21$, $126.70,124.69,121.78,117.45,117.42,116.06,115.85,115.49,115.33,115.08,114.00,113.79,112.67$, $110.61,75.21,74.30,72.68,69.56,55.58,55.13,40.77,31.76,28.20,28.11,27.29,27.16$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{FNO}_{5} 659.80$, found 660.31 .

N-(2-(3'-fluoro-5-((4-((phenylthio)methyl)cyclohexyl)oxy)-[1,1'-

biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25g): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.63$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.06$ (m, 1H), 7.03 (t, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.71$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dq}, J=4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.42$ (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.56-1.38$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 167.23,159.71,159.34,156.40,139.41,137.75,131.40$, $130.79,130.32,130.24,129.80,129.50,129.29,129.17,128.49,128.44,127.32,126.04,125.35,125.32$, $122.41,118.18,116.69,116.48,115.98,115.72,114.61,114.40,113.27,111.22,72.13,56.20,55.75,41.40$,
40.64, 36.97, 32.38, 29.59, 27.22; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{FNO}_{4} \mathrm{~S}$ 675.78, found 676.29 .

N -(2-(3'-fluoro-5-((4-((phenylamino)methyl)cyclohexyl)oxy)-[1,1'-

biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25h): ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.68$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, $7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{tt}, J=7.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=3.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $6 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.70(\mathrm{dq}, J=6.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.24,159.74,159.37,156.46,148.90,131.43,130.82,130.35,130.26,129.80,129.71$, $129.53,128.49,128.46,127.35,125.37,122.43,118.21,117.45,116.50,116.01,115.74,114.64,114.43$, $113.30,113.09,111.25,72.36,56.23,55.77,50.33,41.42,36.95,32.41,29.57,25.70$; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{FN}_{2} \mathrm{O}_{4} 658.81$, found 659.33.

Methyl 4-((6-(2-(3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamido)ethyl)-

 3'-fluoro-[1,1'-biphenyl]-3-yl)oxy)cyclohexane-1-carboxylate (25i): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (ddd, $J=8.6,6.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{td}, J=8.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{td}, J=7.1,2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{dt}, J=13.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{td}, J=12.2,10.1,5.4$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 175.92, 166.90, 159.42, 159.05, 155.97, 139.12, 131.12, $130.52,130.04,129.95,129.51,129.20,128.34,128.11,127.04,125.01,122.11,117.84,116.38,116.17$, $115.75,115.41,114.33,114.13,112.99,110.93,71.63,55.91,55.45,51.78,41.93,41.08,32.09,29.04 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{FNO}_{6} 611.71$, found 612.27 .

Phenyl 4-((6-(2-(3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamido)ethyl)-3'-fluoro-[1,1'-biphenyl]-3-yl)oxy)cyclohexane-1-carboxylate (25j): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.68(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=17.4,8.3,6.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.26-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.4,2.2,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87$ $(\mathrm{m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dq}, J=7.4,3.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{tt}, J=10.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.02$ $(\mathrm{m}, 4 \mathrm{H}), 1.91(\mathrm{dt}, J=13.3,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 173.94$, $166.91,159.42,159.04,155.94,139.11,131.16,130.51,129.97,129.54,129.50,129.20,128.41,128.12$, $127.02,125.87,125.04,125.01,122.10,121.68,117.83,116.39,116.18,115.76,115.41,114.14,112.98$, $110.93,71.58,55.91,55.45,42.05,41.08,32.10,29.03$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{FNO}_{6} 673.78$, found 674.29.

N-(2-(3'-fluoro-5-((4-(methylcarbamoyl)cyclohexyl)oxy)-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25k): ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) δ $7.74-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.95(\mathrm{~m}$, $6 \mathrm{H}), 6.89(\mathrm{td}, J=8.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{tt}, J=$ $10.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{dq}, J=13.2,4.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 176.24,167.23,159.74,159.37,156.29,139.43,131.44,130.84,130.36$, $130.27,129.83,129.52,128.65,128.43,127.35,125.36,125.33,122.42,118.15,116.70,116.49,116.07$, $115.72,114.65,114.44,113.31,111.25,71.95,56.23,55.77,52.10,42.24,41.40,32.41,29.36 ; \mathrm{HRMS}$ (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{FN}_{2} \mathrm{O}_{5} 610.73$, found 611.19.

N-(2-(3'-fluoro-5-((4-(phenylcarbamoyl)cyclohexyl)oxy)-[1,1'-biphenyl]-
2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25l): ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) δ $7.68(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25$ $(\mathrm{s}, 1 \mathrm{H}), 7.13-6.96(\mathrm{~m}, 7 \mathrm{H}), 6.91(\mathrm{dt}, J=8.0,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.46(\mathrm{dq}, J=13.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 173.60,166.93,159.44,159.04,155.94,139.13,131.17,130.51,129.53,129.22,129.16$, $128.11,127.02,125.87,125.04,125.01,122.12,119.92,117.86,116.39,116.19,115.81,115.43,113.00,112.98$, 110.96, 70.85, 55.92, 55.47, 42.05, 41.08, 32.11, 29.14; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{Na} 672.8$, found 695.29.

N-(2-(5-(cyclohexyloxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-3',6-

dimethoxy-[1,1'-biphenyl]-3-carboxamide (25m): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.68$ (dd, $J=$ $8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{qd}, J=7.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-$ $6.95(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{ddd}, J=11.3,8.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ $(\mathrm{tt}, J=8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ $(\mathrm{dd}, J=13.0,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{dq}, J=9.6,5.7,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.91,159.41,159.04,156.32,142.16,139.11,131.07,130.51,130.02$, $129.93,129.51,129.20,128.12,128.08,127.03,125.04,122.10,117.69,116.39,116.18,115.73,115.39$, $114.29,114.08,113.01,110.92,75.55,55.91,55.45,41.09,32.08,31.95 ; H R M S(E S I) \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{FNO}_{4} 553.67$, found 554.27.

\boldsymbol{N}-(2-(3'-fluoro-5-((4-propylcyclohexyl)oxy)-[1,1'-biphenyl]-2-yl)ethyl)-

 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (25n): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=11.7,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ $-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{td}, J=8.4,7.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ $-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.23(\mathrm{dt}, J=12.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.22,159.73,159.34,156.62,142.46,139.43,131.36,130.31,130.23,129.82,129.52,128.44,128.26$, $127.36,125.37,125.34,122.42,118.21,116.71,116.50,116.03,115.70,114.58,114.37,113.31,111.23$, $72.82,56.22,55.76,41.40,39.25,36.65,32.39,29.82,27.73,20.47,14.84$; HRMS (ESI) m/z [M+H]+: calculated for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{FNO}_{4} 595.76$, found 596.317.
General procedure for the synthesis of compounds (28):

N-(2-(3'-fluoro-5-(piperidin-4-yloxy)-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3carboxamide ($7.4 \mathrm{mg}, 1 \mathrm{Eq}, 13 \mu \mathrm{~mol}$), alkyl halide ($1.4 \mathrm{mg}, 1.2 \mu \mathrm{~L}, 0.8 \mathrm{Eq}, 11 \mu \mathrm{~mol}$), were dissolved in DMF (0.05 mL). DIPEA ($1.7 \mathrm{mg}, 2.3 \mu \mathrm{~L}, 1 \mathrm{Eq}, 13 \mu \mathrm{~mol}$) was added to the reaction after half an hour and the mixture was stirred at RT overnight. The reaction was quenched with water, washed with and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (Silica gel, eluted with MeOH:DCM 10\%) to afford 28 (55-80\% yield).

N-(2-(3'-fluoro-5-((1-methylpiperidin-4-yl)oxy)-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28a): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ 7.71 (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{td}$, $J=8.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dp}, J=7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (d, $J=2.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.49(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{ddt}, J=11.5,6.9,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{dtd}, J=11.9,7.7,3.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101

MHz, Chloroform-d) $\delta 167.23,159.69,159.32,156.16,139.39,131.44,130.76,130.34,130.25,129.78$, $129.48,128.84,128.44,127.28,125.31,125.28,122.38,118.06,116.65,116.44,115.96,115.70,114.64$, $114.43,113.24,111.21,56.18,55.73,46.48,41.38,32.38 ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}[M+H]^{+}$: calculated for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{FN}_{2} \mathrm{O}_{4}$ 568.69, found 569.28.

$\boldsymbol{N - (2 - (5 - ((1 - e t h y l p i p e r i d i n - 4 - y l) o x y) - 3 ' - f l u o r o - [1 , 1 ' - b i p h e n y l] - 2 - y l) e t h y l) - ~}$

 3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28b): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.70$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 4 \mathrm{H})$, $6.92(\mathrm{ddd}, J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{q}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.85(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform- d) $\delta 159.15,142.77,139.10,131.60,130.24,130.17,129.99,129.36,129.26,128.23$, $126.89,124.92,124.90,122.10,117.81,116.30,116.13,115.60,115.16,114.66,114.49,112.87,111.03$, $77.36,55.95,55.56,41.01,32.20,29.85,9.27$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{FN}_{2} \mathrm{O}_{4}$ 582.72, found 583.30.

N-(2-(3'-fluoro-5-((1-propylpiperidin-4-yl)oxy)-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28c): ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) δ $7.69(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=8.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{ddd}, J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.5,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H}), 2.10-2.03(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.95(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform- $\left.d\right) \delta$ $159.38,155.39,143.63,142.82,139.36,131.67,130.42,130.35,129.66,129.49,128.45,125.21,125.19$, $122.36,118.06,116.58,116.41,115.79,115.65,114.79,114.62,113.17,111.25,60.10,56.19,55.77,41.29$, 32.42, 30.36, 30.10, 11.92; HRMS (ESI) m/z $[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{FN}_{2} \mathrm{O}_{4}$ 596.74, found 597.31.

N-(2-(3'-fluoro-5-((1-isopropylpiperidin-4-yl)oxy)-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28d): ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) δ $7.70(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{dd}$, $J=9.0,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.96(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41$ $(\mathrm{td}, J=6.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 167.24, 159.75, 155.05, $139.38,131.82,130.52,130.44,130.07,129.69,129.54,128.54,127.19,125.24,122.39,118.20,116.63$, $116.41,115.86,115.41,114.94,114.73,113.15,111.28,67.51,58.46,56.24,55.81,43.75,41.34,32.47$, 27.11, 17.18; HRMS (ESI) m/z [M+H] ${ }^{+}$: calculated for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{FN}_{2} \mathrm{O}_{4} 596.74$, found 597.31.

N-(2-(5-((1-benzylpiperidin-4-yl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-

yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28e): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) δ $7.68(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{ddd}, J=11.6,8.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.65-3.49(\mathrm{~m}$, $2 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 2.39-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{ddt}, J=46.1$, $25.2,13.2 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 166.58, 159.11, 158.74, 141.97, 138.79, 130.86, $130.19,129.75,129.66,129.15,128.90,127.83,126.69,124.70,124.67,121.78,117.46,116.06,115.85$, $115.34,115.12,112.65,110.62,55.60,55.15,40.75,31.78,29.54 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{FN}_{2} \mathrm{O}_{4} 644.79$, found 645.31 .

N-(2-(5-((1-allylpiperidin-4-yl)oxy)-3'-fluoro-[1,1'-biphenyl]-2-yl)ethyl)-3',6-dimethoxy-[1,1'-biphenyl]-3-carboxamide (28f): ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.68$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.94-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.47(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H}), 2.64-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $166.59,159.10,158.74,155.41,142.01,138.78,130.89,130.17,129.76,129.68,129.14,128.90,128.37$, $127.84,126.66,124.69,124.66,121.77,117.45,116.05,115.84,115.29,115.12,114.09,113.88,112.63$, $110.62,61.25,55.59,55.14,40.75,31.78$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$: calculated for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{FN}_{2} \mathrm{O}_{4} 594.73$, found 595.30.

