Supporting Information

Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety

Bedřich Formánek,^a Dorian Dupommier,^a Tereza Volfová,^b Silvie Rimpelová,^c Aneta Škarková,^b Jana Herciková,^a Daniel Rösel,^b Jan Brábek,^b and Pavla Perlíková *^{a,d}

- a) Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic. E-mail: perlikop@vscht.cz
- b) Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Prague West 252 50, Czech Republic.
- c) Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, The Czech Republic.
- d) Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 160 00 Prague, Czech Republic.

Contents:

Synthesis of compound 5	S 2
Supplementary schemes S2-S4	S5
Supplementary table S1	S 7
Supplementary figures S1-S2	S 7
HPLC purity of final cytochalasin analogues	S9
Copies of NMR spectra	S22

Synthesis of compound 5

General remarks

Visualization methods for TLC: Compounds were visualized by irradiation with UV light (254 nm) and/or by treatment with a solution of phosphomolybdic acid (5 g), $Ce(SO_4)_2 \cdot H_2O$ (2 g), conc. H_2SO_4 (12 mL) and H_2O (188 mL) followed by heating or treatment with a solution of anisaldehyde (9 mL) in EtOH (230 mL), conc. H_2SO_4 (8 mL) and conc. AcOH (3 mL) followed by heating or treatment with a solution of ninhydrin (0.2 g) in EtOH (100 mL), conc. AcOH (0.5 mL) and H_2O (4.5 mL) followed by heating.

Scheme S1: Preparation of selenide **5**. Reaction conditions: i) Meldrum's acid, EDC, DMAP, DCM, 0°C to RT, 3 h; ii) NaBH₄, AcOH, DCM, 0°C to RT; iii) toluene, reflux, 3 h; iv) TFA, DCM, 10°C-RT, 1 h; v) BzCl, py, RT, 4 h; vi) ClCO₂Me, LiHMDS, THF, -78°C, 4.5 h; vii) PhSeCl, LiHMDS, THF, -78°C, 5 h.

(*R*)-2-benzyl-5-oxopyrrolidine-1-carboxylate The *tert*-butyl **(S2)** was synthesized according to the known procedures¹ in three steps starting from (tert-butoxycarbonyl)-L-phenylalanine (S1, 7.96 g, 30.0 mmol). All three reactions were monitored by TLC (hexanes/EtOAc/AcOH : 7/3/0.5).1c

First step was amide coupling of **S1** and Meldrum's acid (4.54 g, 31.5 mmol, recrystallized) proceeded with EDC (8.63 g, 45.0 mmol) and DMAP (5.50 g, 45.0 mmol) in dry DCM (90 mL) at 0°C, then RT for 3 h^{1b,c}, followed by evaporation of a crude extract to ca. 100 mL and reduction by NaBH₄ (3.40 g, 90.0 mmol) and AcOH (17.2 mL, 300 mmol) at 0°C for 1 h, then RT overnight (after 3 h, the reaction is almost complete).^{1a,c} Crude product was refluxed in toluene (150 mL) for 3 h. After evaporation of the solvent, column chromatography of the residue (80 g SiO₂, 0-20% EtOAc in hexanes) furnished the **S2** (7.62 g, 92%), yellow oil. Our physical and spectroscopic data corroborated previously published materials.^{1a}

The (*R*)-1-benzoyl-5-benzylpyrrolidin-2-one (S3) was synthesized according to the known procedures^{1d}, TFA (7.6 mL) was added to S2 (7.62 g, 27.6 mmol) in DCM (30.5 mL) at 10°C dropwise. The reaction mixture was stirred at RT until full conversion (1 h, TLC, hexanes/EtOAc : 4/1). BzCl (6.35 mL, 55.2 mmol) was added dropwise to the crude

¹ a) M. Smrčina, P. Majer, E. Majerová, T. A. Guerassina and M. A. Eissenstat, *Tetrahedron*, 1997, **53**, 12867-12874; b) S. Shankar, N. A. Wani, U. P. Singh and R. Rai, *Chemistry Select*, 2016, **1**, 3675-3678; c) O. Chaloin, F. Cabart, J. Marin, H. Zhang and G. Guichard, *Organic*

Syntheses, 2008, **85**, 147-157; d) B. Hao, M. J. Gunaratna, M. Zhang, S. Weerasekara, S. N.

Seiwald, V. T. Nguyen, A. Meier and D. H. Hua, *Journal of the American Chemical Society*, 2016, **138**, 16839-16848.

product in pyridine (69 mL) at RT.² After full conversion (4 h, TLC, DCM/MeOH : 20/1), Et₂O (173 mL, 2.5 vol of py) was added, precipitate was filtered, filtrate concentrated and co-distilled with toluene (2×) under reduced pressure. Column chromatography of the residue (80 g SiO₂, 10-25% EtOAc in hexanes) furnished the **S3** (6.55 g, 85%), yellow oil. Our physical and spectroscopic data corroborated previously published materials.³

Methyl (5R)-1-benzoyl-5-benzyl-2-oxopyrrolidine-3-carboxylate (S4)

This compound was synthesized in analogy with a known procedure⁴ from **S3** (0.57 g, 2.0 mmol) in dry THF (3 mL), using LiHMDS (4.0 mL, 4.0 mmol, 1M in THF) and neat methyl chloroformate (0.31 mL, 4.0 mmol). After full conversion (4 h, TLC, hexanes/EtOAc : 5/1) column chromatography of the residue

on silica gel (0-20% EtOAc in hexanes) furnished S4 (0.57 g, 83%) as a 1.7/1 diastereomeric mixture, yellow oil.

¹H NMR (400 MHz, CDCl₃)

major: δ 7.63–7.58 (m, 2H, 2×Ar), 7.58–7.50 (m, 1H *overlapped*, Ar), 7.47–7.39 (m, 2H *overlapped*, 2×Ar), 7.38–7.21 (m, 5H *overlapped*, Ar), 4.87 (dddd, $J_{5,4a}$ = 8.6 Hz, $J_{5,Ph-CHb}$ = 7.9 Hz, $J_{5,Ph-CHa}$ = 3.5 Hz, $J_{5,4b}$ = 2.7 Hz, 1H, H-5), 3.71 (s, 3H, COOCH₃), 3.35 (dd, $J_{3,4a}$ = 10.0 Hz, $J_{3,4b}$ = 9.1 Hz, 1H, H-3), 3.24 (dd, J_{gem} = 13.5 Hz, $J_{Ph-CHa,5}$ = 3.5 Hz, 1H, Ph-CHa), 2.98 (dd, J_{gem} = 13.5 Hz, $J_{Ph-CHb,5}$ = 7.9 Hz, 1H, Ph-CHb), 2.56 (ddd, J_{gem} = 13.2 Hz, $J_{4a,3}$ = 10.0 Hz, $J_{4a,5}$ = 8.6 Hz, 1H, H-4a), 2.34-2.18 (m, 1H *overlapped*, H-4b) ppm.

minor: δ 7.72–7.66 (m, 2H, 2×Ar), 7.58–7.50 (m, 1H *overlapped*, Ar), 7.47–7.39 (m, 2H *overlapped*, 2×Ar), 7.38–7.21 (m, 5H *overlapped*, Ar), 4.62 (dddd, *J*_{5,Ph-CHb,5} = 9.8 Hz, *J*_{5,4} = 7.5 Hz, *J*_{5,4} = 7.0 Hz, *J*_{5,Ph-CHb,5} = 3.6 Hz, 1H, H-5), 3.80 (s, 3H, COOCH₃), 3.53 (dd, *J*_{3,4a} = 9.8 Hz, *J*_{3,4b} = 8.4 Hz, 1H, H-3), 3.48 (dd, *J*_{gem} = 13.2 Hz, *J*_{Ph-CHa,5} = 3.6 Hz, 1H, Ph-CHa), 2.78 (dd, *J*_{gem} = 12.9 Hz, *J*_{Ph-CHb,5} = 9.9 Hz, 1H, Ph-CHb), 2.34-2.18 (m, 2H *overlapped*, H-4a,b) ppm.

¹³C NMR (101 MHz, CDCl₃)

major: δ 170.02 (C=O), 169.50 (C=O), 168.97 (C=O), 136.17 (C), 134.13 (C), 132.12 (CH-Ar), 129.67 (2×CH-Ar), 128.80 (2×CH-Ar), 128.79 (2×CH-Ar), 127.88 (2×CH-Ar), 127.19 (CH-Ar), 56.60 (CH-5), 52.83 (COOCH₃), 48.84 (CH-3), 38.99 (Ph-*C*H₂), 26.31 (CH₂-4) ppm.

minor: δ 170.93 (C=O), 170.16 (C=O), 170.10 (C=O), 136.39 (C), 144.09 (C), 132.69 (CH-Ar), 129.59 (2×CH-Ar), 129.38 (2×CH-Ar), 128.64 (2×CH-Ar), 128.01 (2×CH-Ar), 126.89 (CH-Ar), 57.24 (CH-5), 52.98 (COOCH₃), 49.12 (CH-3), 39.20 (Ph-*C*H₂), 26.38 (CH₂-4) ppm.

HRMS (ESI) *m*/*z* calcd for C₂₀H₁₉O₄NNa⁺ [M+Na]⁺ 360.1206; found 360.1204.

² E. J. Thomas and M. Willis, *Organic & Biomolecular Chemistry*, 2014, **12**, 7537-7550; this approach furnished easily separable mixture and higher yields compared to BzCl/NaH procedure. ³ S. A. Harkin, O. Singh and E. J. Thomas, *Journal of the Chemical Society, Perkin Transactions*

^{1, 1984, 1489-1499.}

⁴ X. Long, Y. Ding and J. Deng, *Angewandte Chemie*, *International Edition*, 2018, **57**, 14221-14224.

Methyl (5S)-1-benzoyl-5-benzyl-2-oxo-3-(phenylselanyl)pyrrolidine-3-carboxylate

(5)

LiHMDS (4.5 mL, 4.5 mmol, 1M in THF) was added dropwise to a stirred solution of **S4** (1.71 g, 5.1 mmol) in dry THF (10 mL) at -78°C under argon atmosphere. After 40 min, a solution of PhSeCl (0.86 g, 4.5 mmol) in dry THF (9 mL) was added dropwise and the reaction mixture was stirred at -78°C until full

conversion (3-4 h, TLC, hexanes/EtOAc : 5/1). Then, solution of NH₄Cl (10 mL) was added, the resulting mixture was warmed to RT, poured into a solution of NH₄Cl (40 mL) and extracted with EtOAc (2×15 mL). The organics were combined, washed with brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Column chromatography of the residue on silica gel (12-15% EtOAc in hexanes) furnished the **5** (2.32 g, 93%) as a 1.7/1 diastereomeric mixture, red-brown densy oil.

¹**H NMR** (400 MHz, CDCl₃)

major: δ 7.74–7.21 (m, 13H *overlapped*, 13×Ar), 7.18–7.12 (m, 2H, 2×Ar), 4.41–4.30 (m, 1H, H-5), 3.76 (s, 3H, COOCH₃), 3.30 (m, 1H *overlapped*, Ph-C*H*a), 2.68–2.54 (m, 2H *overlapped* Ph-C*H*b, H-4a), 2.25–2.17 (m, 1H *overlapped*, H-4b) ppm.

minor: 7.74–7.21 (m, 13H *overlapped*, 13×Ar), 7.12–7.07 (m, 2H, 2×Ar), 4.63 (dtd, $J_1 = 9.4$ Hz, $J_2 = 7.4$ Hz, $J_3 = 3.4$ Hz, 1H, H-5), 3.66 (s, 3H, COOCH₃), 3.30 (m, 1H *overlapped*, Ph-CHa), 2.73 (dd, $J_{gem} = 14.4$ Hz, $J_{Ph-CHb,5} = 7.6$ Hz, 1H, Ph-CHb), 2.68–2.54 (m, 1H *overlapped*, H-4a), 2.25–2.17 (m, 1H *overlapped*, H-4b) ppm.

¹³C NMR (101 MHz, CDCl₃)

major: δ 170.79 (C=O), 169.73 (C=O) 169.61 (C=O), 137.85 (2×CH-Ar), 136.08 (CH-Ar), 134.06 (C *overlapped*), 132.56 (CH-Ar), 130.24 (CH-Ar), 129.56 (2×CH-Ar), 129.39 (2×CH-Ar), 129.19 (2×CH-Ar), 128.62 (2×CH-Ar), 127.94 (2×CH-Ar *overlapped*), 126.92 (CH-Ar), 126.29 (C), 55.71 (CH-5), 53.71 (C-3), 53.53 (COOCH₃), 38.46 (Ph-CH₂), 34.21 (CH₂-4) ppm.

minor: δ 171.18 (C=O), 169.86 (C=O), 169.02 (C=O), 137.89 (2×CH-Ar), 135.97 (CH-Ar), 134.06 (C *overlapped*), 132.70 (CH-Ar), 130.10 (CH-Ar), 129.60 (2×CH-Ar), 129.42 (2×CH-Ar), 129.25 (2×CH-Ar), 128.67 (2×CH-Ar), 127.94 (2×CH-Ar *overlapped*), 126.96 (CH-Ar), 125.64 (C), 55.92 (CH-5), 54.88 (C-3), 53.59 (COO*C*H₃), 38.76 (Ph-*C*H₂), 34.35 (CH₂-4) ppm.

HRMS (ESI) *m*/*z* calcd for C₂₆H₂₄O₄NSe⁺ [M+H]⁺ 494.0865; found 494.0861.

Scheme S2: Screening of various conditions for epoxide rearrangement.

^a Based on ¹H NMR spectra of the crude material. ^b Obtained as a mixture of **24** and **25**. ^c HPLC separation of the mixture furnished compound **25** in 13% yield. n.d. - not determined, n.r. - no reaction

Scheme S3: Proposed mechanism of formation of compounds 24-26 in reaction of 22a with HCl in diethyl-ether

Scheme S4: Screening of various conditions for elimination reaction.

^a Ratio based on ¹H NMR spectra of a crude product. ^b Obtained as a mixture of **27** and **28**. ^c Different product obtained. n.d. - not determined.

compound	DMSO	1	2	17a	17b	17c	17d	17e	17f	17g
rel. spheroid area	1.02	0.26	0.23	1.21	1.14	0.93	1.24	0.96	0.92	1.17
SD	0.28	0.04	0.06	0.11	0.19	0.18	0.26	0.14	0.12	0.28
compound	17f	17g	17h	1 7 i	17j	20	22a	22b	22h	23a
rel. spheroid area	0.92	1.17	1.05	1.14	1.12	0.56	1.11	1.24	0.98	1.01
SD	0.12	0.28	0.21	0.27	0.30	0.25	0.17	0.30	0.39	0.24
compound	23b	23h	24	25	26	27	28	29	30	
rel. spheroid area	1.10	0.93	0.46	1.15	0.88	0.89	0.72	1.05	0.50	
SD	0.21	0.38	0.07	0.30	0.11	0.27	0.15	0.22	0.27	

Table S1: Spheroid invasion assay with BLM cell line at 10 μ M concentration, 24 h.

Figure S1: Representative images of BLM cell spheroid invasion assay with or without inhibitor. Images were taken at 0 h and 24 h. using a Leica TCS SP2 microscope (5x/0.15 dry objective). DMSO (first column) was used as a control. Scale bar 500 µm.

	DMSO	20	24	26	30	1
0 h						
24 h						0

Figure S2: Actin polymerization assay at 10 μ M concentration. Representative graph of one measurement.

HPLC purity of final cytochalasin analogues

Separation conditions:

A: column 4x150 mm, 5 μ m silica gel, 60 Å, V=1 mL/min, EtOAc/hexane – 0. min 20/80, 10. min 80/20, 12.5. min 80/20.

B: column 4x100 mm, 5 μ m C18-RP, 130 Å, V=0.75 mL/min, MeOH/H₂O – 0. min 60/40, 7. min 95/5, 11. min 95/5, 14. min 60/40, 20. min 60/40.

C: column 2.1x100 mm, 1.7 μm C18-BEH, V=0.5 mL/min, ACN/H2O – 0. min 0/100, 5. min 100/0, 6. min 100/0.

Sample	Purity (%)	Separation conditions	Retention time (min)
17a	98.8	А	9.12
17b	95.5	А	9.60
17c	95.1	А	8.67
17d	98.3	А	9.79
17e	98.9	А	9.65
17f	98.8	А	8.86
17g	98.0	А	10.04
17h	98.4	А	10.06
17i	98.0	А	9.72
17j	99.0	А	11.38
20	97.1	А	7.60
22a	98.4	А	10.62
22b	96.6	А	10.31
22h	99.9	А	10.57
23a	95.8	С	4.44
23b	99.3	А	10.91
23h	98.9	А	10.98
24	99.3	А	9.98
25	98.0	В	9.14
26	97.6	А	7.21
27	99.9	A	7.07
28	97.9	A	7.77
29	95.8	В	8.29
30	99.9	Α	13.54

17a - purity 98.8 %, T_R = 9.12 min

17b – purity 95.5 %, T_R = 9.60 min

17c – purity 95.1 %, T_R = 8.67 min

17d - purity 98.3 %, T_R = 9.79 min

17e – purity 98.9 %, T_{R} = 9.65 min

17f - purity 98.8 %, T_R = 8.86 min

$\mathbf{17g}-\text{purity }98.0$ %, $T_R=10.04$ min

17h – purity 98.4 %, T_R = 10.06 min

17i – purity 98.0 %, T_{R} = 9.72 min

17j – purity 99.0 %, T_R = 11.38 min

20 – purity 97.1 %, $T_R = 7.60 \text{ min}$

22a - purity 98.4 %, $T_R = 10.62 min$

22b – purity 96.6 %, T_R = 10.31 min

 $\mathbf{22h}-\text{purity 99.9}$ %, $T_R=10.57\ \text{min}$

 $\mathbf{23a}-\text{purity 95.8}$ %, $T_R=4.44$ min

23b – purity 99.3 %, T_R = 10.91 min

 $\boldsymbol{23h}-purity~98.9$ %, $T_R=10.98~min$

 ${\bf 24}-purity~99.3~\%,\,T_R=9.98~min$

25 - purity 98.0 %, $T_R = 9.14 min$

 ${\bf 26} - \text{purity 97.6 \%, T}_{R} = 7.21 \text{ min}$

27 - purity 99.9 %, T_R = 7.07 min

 $\mathbf{28}-\text{purity}~97.9$ %, $T_R=7.77~\text{min}$

29 – purity 95.8 %, $T_R = 8.29 \text{ min}$

 $\boldsymbol{30}-\text{purity}\;99.9$ %, $T_R=13.54\;\text{min}$

S26

f1 (ppm)

f1 (ppm)

ujerekijeko enisterekije enisterekij

-104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 f1 (ppm)

16f

								1			1				
	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	
f1 (ppm)															

16i

17a

							1 . 1 .						1 . 1 .	1 . 1 .	1		1		1
-104	-106	-108	-110	-112	-114	-116	-118	-120	-122	-124	-126	-128	-130	-132	-134	-136	-138	-140	-142
101	100	100	110			110	110	120			120	120	100	102	10.	100	100	1.0	
f1 (ppm)																			

S46

-106	-108	-110	-112	-114	-116	-118	-120	-122	-124	-126	-128	-130	-132	-134	-136	-138	-140	-142
	f1 (ppm)																	

BF181.6.fid

<u> </u>										- 1 - 1								
-106	-108	-110	-112	-114	-116	-118	-120	-122	-124	-126	-128	-130	-132	-134	-136	-138	-140	-142
f1 (ppm)																		

17g BF-165.1.fig

22h

BF291

23h

